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i

INTRODUCTION

This report presents the work done and the results obtained during the

year December 1966 - November 1967. Certain parts of the material contained

in this report have been presented in the three quarterly reports submitted

previously. Repetition of this material was deemed desirable, however_ in the

interest of making this report a presentation of the totality of the work done

on the research contract up to the present time with no necessity for referring

to the previous quarterly reports.

Each chapter is intended to be a complete presentation of its own material,

with no cross-referencing among the individual chapters. For convenience, the

references associated with each chapter are included at the end of the particular

chapter. In the interest of clarity and continuity of presentation, some dupli-

cation will be noted in various chapters.

Chapter i contains the work related to optimal guidance of low-thrust,

interplanetary space vehicles. Both the deterministic and stochastic versions

of this problem are discussed.

The estimation and control aspects associated with the problem of soft

landing on a planet with unknown atmospheres is discussed in Chapter 2. One and

two degrees of freedom for the space vehicle are considered. An example is

given in an appendix to illustrate methods by which the estimation equations may

be simplified.

The problem of minimum energy control of electric propulsion systems is

considered in Chapter 3. The controllers for various types of terminal constraints

is discussed.

Chapter 4 contains a discussion of sensitivity considerations in the design

of feedback systems.
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CHAPTER i

OPTIMAL GUIDANCE OF LOW-THRUST_ INTERPLANETARY SPACE VEHICLES

l.l.lntroduction and General Discussion.

In the past few years much interest has been developed in the use

of ion-propulsion for space missions. The low-thrust ion engine will

probably find its most important application in missions to the outer

planets where the retarding effect of the sun's gravity will require a

large space vehicle energy. Up to the present, all the energy (velocity)

has been provided by the launch vehicle. For high energy missions, such

as those to the outer planets, it seems desirable to use high impulse

low-thrust engines to augment the energy supplied by the boost vehicle.

These low-thrust devices would operate during the long flight times between

launch and encounter supplying a higher specific impulse than that available

from present chemical boosters.

For any space mission_ a nominal or desired trajectory is determined.

This trajectory is completely specified in terms of a set of injection

conditions, and also a nominal thrust program. The nominal path selected

usually represents a compromise between many conflicting factors such as

launch energy required_ arrival date, telemetering and tracking considera-

tions, ion-engine fuel required, etc. In many cases, the nominal thrust

program represents the "optimal control" in the sense that it minimizes a

particular mathematical performance functional. However, if we use the same

performance functional to synthesize a guidance system, and temporarily

ignore the influence of noise inputs to the system, then rather large errors

may result at encounter. The reason for this will be brought out in Section 3-D.

Because of launch energy dispersion and random effects in flight, the

spacecraft will inevitably be perturbed away from its standard path. It is

then the job of the guidance system to provide trajectory corrections which



not only ensure that the vehicle approaches its destination in the intended

fashion, but also provide that the vehicle remains as close as is practical

to the nominal orbit in order to guarantee the compromiseschosen!2) It is

also desirable that the guidance system be as efficient as possible in per-

forming these tasks. The following are three guidance schemesthat one

may consider:

(a) Midcourse guidance - This method, currently being employed in space

missions, uses high thrust impulsive forces, applied at one or two points,

in order to nullify the injection errors. This technique would not be

practical in low-thrust missions, however, since the random disturbances

that could be expected are enormously greater than those encountered on

ballistic trajectories. It is because of these large disturbances that a

continuous guidance strategy would be necessary.

(b) Second variation technique (3)' (4), (5) _ This method essentially repre-

sents a partial solution to a general feedback optimal control problem. By

application of this technique, one obtains all optimal trajectories, and

their associated optimal thrust programs, in a region near the nominal path

in the state space. Although it is very elegant, this method unfortunately

suffers from some inherent drawbacks. One of these is that time varying

feedback gains are usually required_ and implementation problems become

apparent. Another disadvantage, which is far more serious, is that intoler-

ably large errors may result at encounter owing to the presence of disturbances.

An analysis of how this phenomenon arises is given in Section 3-D.

(c) Return to the nominal trajectory (6)' (7) _ This approach presumes that

small biases are allowed on the ion engine thrust vector magnitude and

orientation. Such biases are utilized in control strategies, and permit

returning the space vehicle to the neighborhood of the nominal trajectory

using a minimum amount of fuel. As one has undoubtedly inferred from the above
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discussion, noise plays a decisive role in the low-thrust guidance problem.

We saw- h_w the abovc mentioned guidance methods, which are certainly accurate

in the small noise case, turn out to be quite undesirable in the problem we

are now confronted with. The method we now propose achieves the desired

guidance accuracy even in the event that the expected disturbances become

as large as the control which we have available.

One might use the following analogy to describe the strategy now being

suggested. We conceive of a small car enroute across a desert on which high

velocity omnidirectional winds are present. As every small car owner knows,

a strong gust of wind can cause a non-negligible deviation from the intended

course. However, instead of planning an entirely new route, we are much more

tempted to return to the original course in order to prepare for future gusts.

If we didn't use such a strategy_ several properly oriented gusts could bring

very unfortunate consequences.

In addition to its accuracy, this guidance technique also has other

advantages:

(i) Low fuel consumption. In fact, the guidance system is designed to

minimize the fuel required to make trajectory corrections. For

instance, approximately .2% of the total available fuel would be

necessary to correct the largest expected injection errors of a

Mar's mission.

(ii) Mechanization simplicity. This is because only discrete values of

the control variables are needed. Therefore a guidance command

would represent switching from one of nine different control config-

urations to another. It is important to realize that the discrete

nature of the control policy is not a constraint, but rather is the

result of employing a minimum fuel controller.



(iii) Independent of nominal thrust program. This means that the ion

engine could be preprogrammed to execute a particular thrust

function, and the guidance system in no way modifies this program.

We now set out to concisely formulate the problem mathematically. We

shall consider both the deterministic and stochastic problems, in that order.

1.2.Formulation and Solution of the Deterministic Problem.

A. Assumptions.

The system model, or plant, is based on the following assumptions:

(a) The space vehicle is in heliocentric flight. This assumption is

based on the fact that the ion propulsion would be initiated three

days after launch (1) and hence the vehicle would be free of the

earth's gravitational field.

(b) Spacecraft motion is constrained to one plane. This is considered

a valid initial assumption and a desirable characteristic of space

trajectories.

(c) The nominal thrust program consists of an angle history, G(t),

and a thrust history 3 Un(t ) (Fig. l-l). Mass and power availability

variations are accounted for in Un(t ).

B. Available Control.

As one degree of freedom we will allow small, discrete thrust level changes.

We need only consider discrete controls since the minimum fuel controller is a

"bang-bang" controller. Ion propulsion systems will consist of an array of

thrustors as depicted in Fig. 1-2. This configuration lends itself very

nicely to discretely throttling the engine. Since modules will be held in

reserve! 8) these could be used to provide a step increase in the thrust level.

Similarly 3 a step decrease in thrust could be obtained by shutting down modules



which are symmetric with respect to the spacecraft's center of gravity.

In addition to these t_must variations, wewill also allow small dis-

crete attitude variations about the yaw axis. More precisely, we will allow

a rotation of the spacecraft itself, independent of the nominal attitude

history obtained by rotating only the engine. This method leads to much

simpler system implementation. Wemay only allow small variations in the

yaw angle because the solar panels, from which the spacecraft receives its

power, must be oriented toward the sun. In summary, the nine allowable

states of the thrust vector are represented in Fig. i-3.

At this point we mayalso include the observation that the nominal

thrust program would very likely be designed as a step function in both the

angle and thrust level variables - that is, both of these quantities would

be held fixed over a finite numberof time intervals. This is especially

probable in the thrust level program as a result of the design of electric

propulsion devices as an array of individual engines. Although we do not

incorporate the discrete nature of the thrust program as a constraint, it

will be useful, in someinstances, to consider this possibility.

C. Performance Criteria.

Basically there are two performance indices which are meaningful in this

problem. The first is the minimum time criterion which indicates the desir-

ability of returning the space vehicle to nominal trajectory as quickly as

possible, and thereby maintaining flight along the standard path for as much

of the voyage as possible. The second performance index which is extremely

meaningful here is that of minimum fuel, or returning the space vehicle to the

standard orbit with as little expenditure of propellant as possible. It will

presently be shown that these two criteria are, for all practical purposes,

equivalent in this problem. For that reason they will be used interchangeably.
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D. First Solution.

The coordinate frames we will be considerin_ aDoear in Fig. i-i. The

coordinate frame (Xl, x3) has its origin at time t at the point in space

where a vehicle on the nominal trajectory would at time t, assuming flight

begins at t = O. Note that the angle 6(t) is determined by the nominal

trajectory desired and is thus a function of time only. The differential

equations of vehicle motion in the (xl, x')o frame are as follows:

= x 2 = F1

_-x"I=
- G_s(xi+ D)

((q + D)_+ (x_)_)3/2

u(t)(x_cos(7+ _) + (xi + D) sin(7+ _)

((xi + D)2 + (x_)2)1/2

x_ = x'4 A=F3

A
= F 2

(i-i)

((xI + D)2÷ (x_)2)3/2

u(t)((xi + D) cos(_+ 7) - x_ sin(C_+ Y))A

((xI + D)2+ (x_)2)i/2 = F4

where G is a constant of gravitation, M s is the mass of the sun, and

u, y, % and D are defined in Figs. i-i and 1-3.

In vector notation, Eq.(1-1) becomes

i' = F(u, 7, x')
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where X' = col(xl, x_, x3, x¼) and F = col(F1, F2, F3, F4).

we have deviations X(_) = COI[xi(T), X2(_), X3(T), x4(T)]

nominal trajectory, then the problem is to find the controls,

If at time

from the

u(t), y(t) OgT_t<T

subject to control constraint shown in Fig. i- 5 such that

X(T) = o

and either of the performance indices

(a) _ dt (b)

T
P

J

0

u(t) dt

is minimized.

Referring to Fig. 1-4 3 consider the following coordinate transformation:

xl'' = xl' cos(_ + _) + x_ sin(_ + _)

x_' : - xi sin(_ + _) + x_ cos(_ + (%)

(l-2)

Differentiating these equations twice yields

xI' : xi cos(8+ C_)+ x_ sin(_+ (%)- xi(_ + &) sin(_+ _)

+ x_(_ + &) cos(_+ _) :Ax2"

""' = x_' x_ cos(_ + O0 + x_ sin(8 + G) - 2xi(_ + _) sin(_ + O0xI =

. xi(_ + &)2 cos(6 + C_) - xi( _ + &_ sin(_ + C_) + 2x_(_ + &) cos(_ + c_)

- x'(6 + &)2 sin(6 + G) + x_(_ + &] cos(6 + G)
O J
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x_' = - x I sin(_ + (_) + x_ cos(8 + _) - x_(_ + _) cos(8 + _)

- x_(_ + -_) sin(_ + _) _ x,_'

- x_(_+ &) cos(_+ (_)- x_(_'+_) sin(B+ (z) (i-3)

Letting the subscript n denote the nominal values of the variables

_''_ u, 7, and X'_ Eq.(l-3) canbe written

Xn' + 5X'' : R(t) F(u n + 6u; 7n + 67, X'n + X) + S(t) (Xn + X)
(1-4)

where 6X'', 6u_ and 67 are deviations from nominal values, and the

matrices R(t) and S(t) are defined by

R(t):A

S(t) :A

cos(_ + _) 0 sin(8 + _) 0

o cos(_ + _) o sin(_ + _),

-sin(_+ _) o cos(_ + _) o

0 -sin(_ + G) 0 COS(_ + _) i

(6&) sin(_)

-(_ sin(_+(_)

- (_&)2sin(_+(z)

-(_&)cos(_)

-(_) cos(_)

+(_) s_n(_)

0

o

-_(_&)cos(m_)

(_&) cos(_)

-(_&) cos(m_)

-(_&) sin(m_)

-(_&_ s_(_)

-(_&)_oos(_)

(1-Sa)

0

_(6&) cos(ms)

(l-5b)
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In space trajectory problems such as this one, linearization of the dynamical

equations about the nominal path often yields satisfactory approx4__._tions to

the true physical situation. This statement is supported by the fact that

we are striving to keep the vehicle in the neighborhood of the nominal tra-

jectory, and also that the quantities 8u and 6y are "small" in relation

to their nominal values. Hence, we carry out a Taylor series expansion of

Eq. (1-4), which yields

i n'' + _'' = R(t) (F(Un, Yn, Xn)' + Fx.(Un, Yn, Xn) X + Fu(Un,_n, Xn) 8u

+ Fy(Un, Yn, Xn) 6Y + (higher-order terms)) + S(t) (X_ + X) (1-6)

where FX, is the Jacobian matrix whose ij-th element, _F./_' is the
l j'

partial derivative of the ith component of F with respect to the jth component

of X'. Also, F u : c°l[SF1/Su, _[_F2/_gu, _F3/_u , _F4/Su] and similarly for

F :
Y

0 i 0 0 0

A 0 B 0 - sin(_+_)

0 0 0 i ; F =u 0

C 0 D 0 cos (_+_)

F

0

- u cost  )n

0

-



ll

where

-aMs÷ _n(Xln÷ D)
A = +

((x_ + D) 2 + (X'3n),2)3/2

3aM(xA + D)2

((xln + D) 2 + (X_n)2)5/2

-Un(X_ + D) 2
B = +

, n)2)3/2((x_+ D)2+ (x_

3GMs(X _ + D) X_n

((Xin+ D)2 + (x_)2)3/2

C = 3GMsX_n (xln + D)

((Xln + D)2 + ((X_n)2)51_ +

u (2(Xln + D) 2 n )2n + (x_ )

((Xln + D) 2 + (X_n)2)3/2

D

GMs(2(X_n )2 - (Xln + D) 2 UnX_n(Xln + D)

((x.i n + D) 2 + (X_n)2)5/2 - ((xl n + D) 2 + (X_n)2)3/2

Defining the controls

uI = - UnSy u2 = 6u (1-7)

and making suitable manipulations, Eq. (1-6) becomes

o cos(_+_)
f
IA cos(_+_)+C sin(_,+_) 0

_i',(t)
o -sin(_,-_)

i-A sin(_+_)+C cos(_+_) 0
L.

0

A cos(_o0+D sin(_-c0

0

-B sin(_+_)+D cos(_+_)

sin(_+_)

0

cos(_+_)

0

x(t)
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_0

i0 ,

+ I iu_(t)+
iol

! 0 _

io

_ 0

_l(t)

w

-t: sin i_ o r: cos

" .2 _" .2 .-_ sin _ - _ cos _ -2_ sin _ cos _ - _ sln

•-_ cos U 0 - sin

•. .2 . .2-_ cos _ + _ s_n _ -2 cos _ - sin _ - _ cos

O

2_ cos

0

-2_ sin

X

(1-8)

where we have set _ = 8 + (_ and have neglected higher order terms.

We note that in general u1 is a time varying function if un is.

However, as has been mentioned above, Un(t ) would probably be a step

function as a practical consideration (if it is not, we approximate it with

a step function), and hence u1 is piecewise constant. To gain more insight

into the problem, Eq. (1-8) will be simplified by neglecting small terms. The

quantities A, B, C and D are proportional to changes in the sun's gravity

and the angle 8 over a region in space near the nominal trajectory. These

quantities are of the order of l0"12 in mks units, and will therefore be

neglected. Similarly the quantities _ and _2 are of the order of lO-14,

and _ and _" would be smaller than that or zero. It can be seen, for

example, that in the Jupiter mission shown in Fig. 1-5 that _ varies at a

slower rate than 8. Of course, when (z is a step Ikmction, _ and _" are

both zero. Finally it will be assumed that the quantities (_ + _)x 2 and

(_ + _)x 4 are negligible with respect to u1 and u2. Actually, typical values

would be lO -6 for (_ + _)x 2 and (_ + _)x 4 and lO -4 for uI and u2.

We expect the latter assumption to yield the largest error.

We use the physical reasoning above and the fact that
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o 1

o o

o o

o o

o o

o o

o 1

o o

8X'' (t) =

-_ sin

O

-_ cos

O

cos

0

-sin

0

cos

0

-_ sin _

0

-?
sin _!

0

cos V

X(t)

to obtain

rO 1 0 Oq

0 0 0 0
6)_(t) =! -6X''(t) +

:!0 0 0 1

I0 0 0 0

1

Ul(t)+
0

0

-W

0

0

0

1

u2(t) (m-9)

It is evident from examining Eq. (1-9) that the four-dimensional minimum-

time problem has been reduced to tw$ two-dimensional problems_ since the 8x_'

and 6x_ ' equations are decoupled from the 6x_ ' and 6x¼ ' equations. The

(a) minimum-time and (b) minimum-fuel problems will now be solved by applying

the pr_cipies of 0pt_ control theory. We will consider one two'dimensional

problem for each performance index.

Let

8xi' = Yl Gx_' = Y2

then

Yl = Y2 Y2 = u
(l-lO)

The Hamiltonians for the two problems are

(a)

(b)

H = I + kly 2 + k2u
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The optimal controls minimize the Hamiltonian. Hence

(a) u -- - k sgn(k2)

(b) u : - k sgn(1 + k2)

where k is the maximumattainable value of the control variable u. The

Lagrange multiplier equations for both problems are

_l = 0 i 2 = - kI

whose solutions are

kl(t ) = kl(O ) k2(t) =- kl(O ) t + k2(O) (l-n)

Equations (l-ll) implies that one switching of the control u

in each case. Solving Eq. (i-i0) for constant u yields

is possible

1
Yl(t) : _ ut 2 + y2(O) t + Yl(O)

y2(t) : ult + Y2(O)

Eliminating t fr_n these equations, we find that

2ul(Yl_Yl(O)) = (y2_y2(O))2 + 2y2(O) (y2_y2(O)) (1-12)

Equation (i-12) shows that the vehicle will follow a parabolic trajectory

in the (Yl' Y2 ) plane for constant u. Coupling this fact with the fact that

only one switching is optimal, the "switching boundary" is obtained, as shown
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in Fig. 1-6. Hence, we conclude that the same control strategy is optimal

for both performance indices. The expected trajectory for a set of initial

deviations from the nominal trajectory is also shown in Fig. 1-6. Various

numerical experiments were performed using this solution for specific space

missions, and the results are reported in references (6) and (7).

E. Second Solution.

The motivation for the second solution is the desirability of obtaining

a more accurate approximation to the minimum-time (minimum-_el) solution by

making larger use of digital computer capabilities.

The first step is to linearize Eq. (l-l) as follows:

X'(t) = Xn + X(t) : F(_n+6U,Yn+SY,Xn÷X) = F(Un, Yn, Xn)+ Fu_ u + FySy + Fx,X

+ (higher-order terms)

As before, we neglect higher-order terms, and the terms A, B, C, and D in

rx I.

step function) and

0 1

0 0

X(t) =

0 0

Also, we use the definitions of

u 2 to obtain

0 0 0

0 0

0 1
x(t)+

0 0 0 O_t--

cos(6+a)

J

sin(_-a)

We now will regard _(t)

u1 (where u (t) is regarded as an

Ul(t)+

0

-sin(_-oO
_2(t)

O

cos_G)

as a step f_nction and consider the following

transformation:

A

TX = X

0

; T=
-sin (_

0

Then Eq. (l-13a) becomes

0 sin _ O |-_

cos G 0 sin _ i

0 cos _ O
t

-sin _ 0 cos _

(1-13a)
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and th

X=T

0 1 0 0

0 0 0 0

_ 0 0 0 1

0 0 0 0

_refore
O 1 O O-I

ooooi T- + T

O O 0 1

L-.

i o
i_cos(_)

T + _

! o

! sin(_s)

0

0

o o o o s_(_s)

'-I
0

-sin(p+s) i

0

cos(_s)

cos(_)

where _
cos s 0 - sins 0

( 0 cos s 0 - sins

T'l = TT = i
sins 0 cos S O

0 sin s

Eq. (1-13b) thus becomes

O

d

I 0 1 0 0

^ !o o oo ^
X= _ _ X+

I 0 0 0 i

0 0 00_

0
f

COS

0

sin p

COS (%

-sinp

_u2(t)
0 i

- cos p_

[ 2J

(l-13b)

For notational convenience we redefine

X=X

and obtain

0 1 0 07

! ,$0 0 0 Ol

X(t) = I I X(t) +

i° ° ° i I
_, 0 0 0 0

"I"
0

cos_(t)

O

sin p(t)

_i(t)+

F- 0 -

- sin p(t)

0

cos p(t)

(I-13c)
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P
The differential equations for the Lagrange multipliers are then

which have the solutions

kl(t ) = kl(O ) k2(t ) :-kl(O)t + k2(O ) k3(t ) = _(0) k4(t ) =-k3(O)t + k4(O_j

The optimal controls are therefore given by

D

D

ul(t ) : - k sgn((-kl(O)t + k2(O)) cos G(t) + (-k3(O)t + k4(O)) sin G(t))

u2(t ) : - k sgn((-kl(O)t + k2(O))(-sin 8(t)) + (-k3(O)t + k4(O)) cos 8(t))

(i-14)

Some possible realizations of Eq.(l-14) would be as in Fig. i-7. (Note that

is not expected to exceed 90 deg before nominal trajectory acquisition.) These

realizations suggest that each control would have a maximum of two switchings.

Now, given the initial conditions on Eq.(l-12)3 we can write the explicit

solution for X(T), where T is the nominal trajectory acquisition time.

That is,

X(T): _(%o)x(o)+

W_

@(T, t)

0

o F
, i 0

l-sin _(t)

COS

_(t) ul(t)dt + _ _(T,t)

o I b I o

sin _(t) i i cos 8(t)

u_(t)dt

(I-15)

where _(t2, tl) is the fundamental matrix that satisfies the matrix differential

equat i on
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_(t_,t m) =

0 l 0 0

O O 0 0

O O 0 l

0 O 0 0
_ J

(!-16)

with _(tl, tl) = I. The solution of Eq.(l-16) is

_(t2, tl) =

i (t2-tl) O

0 i 0

0 0

O 0

0

0

i (t2-tl)

0 I

(i-17)

Since the absolute values of u1 and u2 are constant, only the sign

of these quantities is needed inside the integrals of Eq. (1-15). If we

designate Ul(O ) and u2(O ) as the initial values of uI and u2_ tI and

t2 as the switching times of Ul, and t3 and t4 as the switching times

of u2, then Eq. (1-15) becomes

t.1 t.2 T., [3 T
X(T) = _(T,O)X(O)+ Ul(O)! - + + u2(O) - +

'-0 tI t2_ _0 t3 t4_

(1-18)

The integrals of Eq.(l-18) can be explicitly evaluated if we assume that

varies at a constant rate. This is an excellent approximation for the tra-

jectories of interest. Hence, if we assume that

6(t) = _t _ = constant =.

and if we define
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I1

2tI 2

= Ul(O ) -- sin _tI + --_ cos _t1
6O

2t 2
- -- sin _t 2

cO

2 cos _t 2

2
tO

T sin _T

+

tO

1 i 2t3cos _t3 2 sin _t 3

+ --_ cos _T 2 u2(O) " + 2
(D £0 tO 60

2t4cos _t4
+

CO

2 sin_t 4

2

T cos eT sin eT
+

2
_O tO

12 = Ul(O ) _e sin et I . _e2sinot2 + __lsin _T - u2(O ) . _e2cos et 3 + _e2cos _t 4

1 1
- --cos _oT + --

(D CO

-2tlcos _tI 2 sin _tI

(D (D

+

2t3 2
+ u2(O ) -- sin _t 3 + -_ sin et3

co CO

1 1

+ --_ COS eT - -_
_0 tO

2tzcos et 2 2 sin et 2 T cos _T

2

sin _T

+ .
2

tO

2t4 2 cos et4 T sin eT

- -- sin et__ 2 +

-2 cos _t I 2 1 1
+ -- cos et 2 - -- cos eT + --14 = Ul(O) _ _ _

2 2

+ u2(O ) --_ sin _t 3 - --_ sin et4

i
+ - sin eT

tO

then Eq.(l-18) becomes
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Xl(T ) : Xl(O ) + Tx2(O) _ ll + T12 A Gl(tl, t2, t3, t4, T)

x2(T) = x2(O) + 12 A G2(tl, t2 ,t3 ,t4 ,r)

Xs(T) = x3(O) + Tx4(O) . 13 + TI4 A G3(tl, t2, ts, t4, T)

x4(T ) = x4(O) + 14 A G4(tl, t2, ts, t4, T)

(1-19)

Equations (1-19) are four equations in five unknowns. Since it is desired

that X(T) = O, the problem is nowto find the minimumvalue of T for which

Eqs. (1-19) can be satisfied. Fortunately enough, these equations can be

solved by the Newton-Raphsontechnique, and such analysis indicates that the

minimumvalue of T is achieved either when T = t 2 or T = t4. Hence one

control will have one switching, and the other will have two switchings. It

is fairly easy to determine the correct Ul(O) and u2(O), and thereby

Eqs. (1-19) can be solved for the minimumvalue of T and for the switching

times of the control variables.

The experimental results for the second solution, and how they relate to

the sameexperiments using the first solution, are given in References (6) and (7).

F. The Open Loop Problem - An Algorithm for Determining Minimum-Fuel _na

Minimum-Time Trajectories.

At this point it is necessary to compute the exact open loop trajectories

in order to determine the accuracy of the closed loop systems already derived.

To do this, we first consider the differential equations for the deviations of

the state vector from nominal values:

= l_ - ]_n = F(X,u, 7) - F(Xn, Un, Yn )

(i-2o)
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The performance indices we are considering are the following:

T T

(a) fu dt (b) _dt

O O

T free, 6X(T) = O

where we are given 6X(O) = 6XO.

The H_miltonians for the two problems are

(a) H = u + <k,G(t,X,u,y)> (b) H = i + (k,G(t,X,u,y)> (1-21)

The optimal control minimizes the Hamiltoniam at each instant of time.

In particular, it minimizes

(a)
F
J

M(u,y, Xl, X3, k2, k4) = u I1 -

[

h(x3 co_ (_+_)+ (xfo)sin(_ + _))

((Xl+D)2+ -3Y2]1/2"

k4((Xl+D ) cos(y+G) + x3sin(y+c_)j

((Xl+D)2 + x_)l/2 ]
(1-22)

(b) M(u'V'xl'x3'_2'_4): l -
uk2(x3 cos(7+C_) + (Xl+D)sin(y+C_))

((xfD)2 + x_)l/2

uk4((Xl+D ) cOS(7+C_) + x3 sin(y+C_))

_.,i/_
(xfD)_ + _3_(

We define for both cases
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@l(Xl, X3, k2, k4)=ui e U = {Ul, U2, U3] u.1 minimizes

@2(Xl, X3, k2, k4)=_ i e A = {yi, y2, y3} Yi minimizes

M

M

(1-23)

Note that _i and _2 are discontinuous functions whose partial derivatives

are zero with respect to all arguments (except at discontinuities). Also note

that _l and _2 are not explicitly known functions, but can be easily

calculated on the computer since only nine combinations of u and y need

to be checked. Substituting Eq.(1-23) into Eq.(1-21) we obtain

9_

(a)

(b) H

: _i + (k,G(t,X,_l,@2))

: i + (x,G(t,x,_l,_2))

(i-_4)

The canonic equations are

96
_=H

k

(1-25)

and the transversality condition gives

_(_) : o (1-26)

We note here that quasilinearization cannot be used for this problem, since

¢1 and @2 are discontinuous functions. It should also be mentioned that

the approximation-in-policy-space algorithm was tried, but does not converge
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for this problem. The main reason for this is probably because of the dis-

continuities in the control. The motivation for the algorithm which follows

is the Newton-Raphson technique for solving non-linear equations. The basic

idea is to determine how the end conditions on 5X and H vary as functions

of T and the initial conditions on k. One could normally approximate such

behavior by first linearizing the non-linear equations, and then using linear

differential equation techniques. This is the general attack in the quasiline-

arization method. As we have already pointed out, however, the method fails

here owing to the discontinuity of _l and _2"

We now define the following quantities:

or

Let

Px(o)iA
t'- T j =CO

[ 5X(T)7

-- o)
J

C(On) be the nth estimate of CO. Then in general E(C_ n)) _ (_

(1-27)

E(C(on)) = e (n) _ 0

We would like to find AC(on) such that

E(C_n) + Ac(on)) = O

Expanding this equation to first order about C_ n) yields

E(C_ n)) + ECo AC_ n) = 0
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This implies

ACo(n)= -E -1 e (n)
Co

(1-28)

Equation (1-28) would be easy to solve for

we do not have an explicit expression for ECo.

in the algorithm by a perturbation technique.

(a) Guess C_I).

(1)
(b) Integrate Eqs.(l-25) to obtain e

(c) Perterb C_I) by an amount f Co(l)

(d)

AC_..)(n except for the fact that

This matrix is approximated

The algorithm is as follows:

: E(Co(1))

where the scalar f << i.

Compute ECo according to the following approximate formula:

ECo =

(e)

(f)

f c(1)
Ol

f c(l)
o5

f c(I)
Ol

Calculate E -I then obtain

CO '

E5(Co(1) + f c_l)) - E5(C(oI) )

f C (i)
05

AC_ I) from Eq.(l-28).

Repeat this process until the solution converges.

U

The computer results for both the minimum-fuel and minimum-time problems

are shown in Figs.(l-8)-(l-13). In additio_ the trajectories obtained by using

the closed loop controller derived in the second solution are included for

comparison purposes. We first note that the differences between the trajectories

for the non-linear minimum-fuel and minimum-time problems are small, as was
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predicted by the analysis at the end of Section D. As a second consideration_

we observe that the linearized controller gives a very good approximation to

the exact optimal solution. One aspect of the extremal trajectories that was

lost by linearization_ however_ is the time interval when y = O. It is

interesting to not% though_ that this "coast period" has little effect on the

performance index. We conclude that the rather negligible degradation in

system performance which results from linearization is more than compensated

for by the comparative simplicity of controller implementation.

1.3.Formulation and Solution of the Stochastic Problem.

A. Introduction.

A spacecraft which is propelled and guided by a low-thrust ion-engine will

be subjected to random disturbances. Undoubtedly the sources of these distur-

bances are many, but they will contribute to produce the two stochastic pro-

cesses of interest:

(a) the attitude (yaw) angle of the vehicle

(b) the low-thrust acceleration magnitude.

These processes will have a significant effect on the trajectory which the space

vehicle follows, and for that reason the guidance problem becomes crucial.

Herein is a study of that problem.

B. The Problem.

In previous sections the low thrust guidance problem has been fornmulated

for the deterministic case. The underlying idea was to return the vehicle to the

nominal trajectory in a minimum amount of time (or, equivalently_ using minimum

fuel). The reasons for doing this have already been pointed out and will not be

reiterated here. The stochastic formulation will be different for two reasons.

First_ it is unrealistic in the stochastic problem to require the state deviations

to be zero at the terminal time. In many cases_ such a constraint would lead to
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meaningless results. Instead, a neighborhood of the origin will be defined

as the set of desired final states. Second, the minimum time criterion is

no longer applicable since, in general, the time required to reach the target

set is a random variable. A reasonable approach to this problem is to

minimize the average time required for this task.

It was shown in the first deterministic solution that the guidance problem

could be analytically reduced to controlling two independent, double-integrator

plants. This "separation" property will be exploited here since it closely

approximates the dynamical characteristics of the space vehicle.

C. The Noise Model.

One of the most important questions is how to model the noises acting on

the system. Invariably one is forced to make approximations and assumptions

since a complete characterization of a random process is virtually impossible.

However, the essential features of a stochastic process can and should be

retained by an examination of available data. The essential features we have

strived to include in our stochastic model are the following:

(a) the mean value (u)

(b) the range of variation, or standard deviation (_)

(c) the rate at which the process varies, or the correlation time (l/B).

If these quantities are not available a priori, it would be necessary to esti-

mate them in flight. It is not unrealistic, however, to assume that they are

available from preflight test data.

A stochastic model which retains all of these features as parameters is

the Ornstein-Uhlenbeck (OU) process! I0) The control variable u I (or u2)

can therefore be represented as follows:

ul(t ) = u + x3(t ) (i-29)
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P
where x3 is an OU process with zero mean, variance _2 3

1/B.

and correlation time

A typical sample function for this stochastic process is given in Fig.

l- 17. If a suitable interpretation is given to the solution of a stochastic

differential equation, it can be shown that the process x3(t ) satisfies the

following Langevin equation

x3 = " Gx3 + _(t) (1-30)

D

where _(t) is zero mean, Gaussian, white noise with variance 2.

We can summarize the discussions above with the following problem formu-

lation (note that only one of the two two-dimensional problems of Eq.(1-9),

Section 2, need be considered):

PLANT: _l = X 2

x2 : u + x3 (i-31)

x3 = - 5x3 + _

PERFORMANCE INDEX:

T
f

E / dt , X(T) c N O
,r

b

D

where NO is the neighborhood of the origin referred to previously, and

X = col(Xl3X2,X3). It will initiallybe assumed that the state is known

exactly. Then we will consider the more realistic case where the state is not

precisely known. Before we begin the analysis of these problems, however, it

would be of considerable interest to determine the performance of other guidance

systems under the influence of the same stochastic disturbances.
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D. Analysis of the Second Variation Guidance Technique in the Presence

of Stochastic Disturbances.

One guidance technique that has attracted much attention recently is the

method of neighboring optimal trajectories, otherwise known as the second

variation technique! 3)' (4), (5) As was pointed out in Section l, this scheme

essentially yields the feedback solution of an optimization problem in a

small region of the state space around the nominal trajectory. Of course_

it is not necessary to use the second variation technique to obtain this

feedback solution. For example, if at each instant of time one could recompute

the open loop nominal trajectory based on the current state of the system, the

same effect would be achieved. When this deterministic controller is blindly

used in a noisy system, however, one may be surprised to find that a rather

undesirable system performance results. The reason for this will become clear

in the following analysis.

As a starting point we assume that the plant equations and the performance

index have been specified. In addition, we presume that the associated nominal

trajectory has been calculated. According to the theory of the second variation,

the approximate feedback solution is obtained by solving the following equivalent

linear problem:

PIANT:

* *

5u (1-32)

/

82H
8X +

_Su

PERFORMANCE INDEX:

W. /

, _82H 8u2 +

J _u2
0

82H 6X 2 82H 8XSu (1-33)

along with suitably specified (linearized) terminal boundary conditions.

H

Here,

represents the _._al_a,_ of +h_ or_g_l p_n_le_ 3 and +._ * indicates
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D
that a quantity is to be evaluated along the nominal trajectory. Thus

Eqs.(l-32) and (1-33) yield a linear regulator problem whose solution can

be exactly determined. We now wish to investigate this problem within a

fairly general framework so as to obtain the dominant characteristics of

the class of problems of interest.

First we need to make the observation that the weighting matrices in

Eq.(l-33) act in such a way that 6u and 5X are penalized with approximately

equal value for a given percentage change in nominal values. Another way of

stating the same thing is that within a field of neighboring optimal trajec-

tories small changes in the state X are caused by proportionately small

changes in the control u. We will therefore assume that the weighting

matrices can be approximated by constants whose values tend to produce the

effect described above. Of course, an exact analysis would be totally dependent

on the individual problem. Here we are attempting only to obtain the gross

effects in a wide class of problems, and justification depends on comparison

with particular cases.

Since Eq. (1-32) simply represents the linearized plant equations, we will

use the equations obtained in Section 2 (Eq. (1-9)). In keeping with the dis-

cussion above, we will use the following performance index:

T

,S 5X

0

i 0 0 0

0 C1 0 0

0 0 1 0

0 0 0 C.

c U

C22'_ 0

8X + 6u I 6u dt
J

(1-34)

where the constants CI and C2 are chosen such that X2nom and u 2nom are

given equal weight. Now_ from the theory of the linear regulator problem, the

optimal control 5u is given by

** See Appendix A.
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* i R-I bT
6u = - _ P 6X

where the matrix P satisfies the differential equation

i PbR-_Tp + 2Q = 09+ PA+ ATp - _ (1-36)

Here

C
0 1 0 0

iO 0 0 0
A= I

i0 0 0 i

Lo 0 0 0

; b =

0 0

i 0

0 0

L0 i]

; R=

B

C22 O

; Q=

f--

1

0

o c 2i i
- J io

0 0 0

CI 0 0

0 0 0

0 0 C1

and the boundary condition on Eq.(l-36) depends on the transversality condition

of the particular optimization problem. Since for all space missions the value

of the terminal time T is very large, the matrix P would assume its station-

ary, or asymptotic value through most of the flight. We therefore solve Eq.(l-36)

as an algebraic equation by setting P = O. Doing this yields the following

control law (because of symmetry, we only consider one two-dimensional problem):

l

* 2

6uI = - C28x I -\ 2C 2 + C I C2 6x2

Therefore, the spacecraft state deviations will obey the following differential

equations:

I "1=

0
i _ i 6xl

i! 2 I 6x2-\2c + ClC2 I
h

(1-37)
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Wenow must analyze the performance of this system in the presence of noise.

Using the samenoise model described in Section C, we are led to the followi_

Langevin equation:

SXl

5 3!

O

.- C 2

1 0

-_/2C 2 + ClC _ 1

o o -13

- F 5xI

i 6x 2

6x

7

+

0

0

o
-- ___

(1-38)

where the new state, x3, is the Ornstein-Uhlenbeck process# and _(t) is a

zero mean, Gaussian, white noise with unit variance. Now, according to the

Fokker-Planck theory, the state of the system described by Eq.(l-38) is com-

pletely represented at each instant of time by a Gaussian density function_

and the covariance matrix, M, of this density satisfies the following

differential equation (9)"

MD T GG T_=_+ + (1-39)

where [
0 i

D

/

- C2 . -. _'2C2 + CIC2

0 0

0

1 ;

-6

S

0

0

and the boundary condition is the prespecified initial covariance matrix, M(O).

We again use the fact that the time necessary for the space flight is very

large, and M will necessarily converge to its asymptotic value. Therefore

we solve Eq.(1-39) with M = 0 and find
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2
1 \l2C 2 + CIC 2

c2 _c2

M - ! 0- i

i\2c2÷ ClC

V2C2 + Cl_ 2

M22 0 _ M22

M22

?

M22 _'2C 2 + CIC22 M22

\_2C 2 + 2.,,,,, ClC 2 M22

where

M22 =

2
C2_2C 2 + ClC 2 2

+ 2C 2 + ClC _ + 8 2C 2 + ClC 2

The values of MII and M22 , which represent the standard deviations

of the spacecraft position deviations and velocity deviations respectively,

are plotted in Figs. (i-14) and (1-15) as a function of the attitude control

limit cycle time. For the purpose of evaluating these quantities, the follow-

ing nominal system parameters have been assumed

THRUST = i oz.

SPACECRAFT WEIGHT = 2500 lbs.

ATTITUDE CONTROL DEADBAND = 1 °

Examination of Figs. (1-14) and (1-15) reveals that truly enormous errors may

result from using this guidance strategy. An intuitive picture of why this

happens is fairly easy to see. That is, when the spacecraft deviates from the

nominal trajectory, the new optimal thrust program assumes a form such that the

course of the vehicle is corrected in a relatively gradual fashion. This is
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perfectly all right to do in a deterministic system where there is no noise

present to produce any further deviations. How;ever, since large disturbances

do act on the system we can only expect that by correcting the space vehicle's

course very slowly_ we give the noise more time to draw the vehicle even

farther away from the nominal trajectory. This effect builds upon itself

until steady state deviations are attained, as shown in Figs. (i-14) and (i-15).

We must emphasize here that the errors we are considering are those resulting

from the control policy only, and do not include the covariance of the state

estimation, which would represent a lower bound on the accuracy of the space

miss ion.

The conclusion we can draw from this analysis is that as the magnitude of

the disturbances approaches the magnitude of the control available to the

system_ then a deterministic guidance policy seems to be quite inaccurate. It

is apparent that a more aggressive error correction policy should be used in

order to achieve the accuracy desired. Intuitively we sense that in problems

of this type, where the available control is very small_ that we must use all

the control available all of the time in order to combat the effect of the noise

inputs to the system. We now return to considering an approach which does just

that.

E. The Stochastic Minimum Time Problem with Known State Variables.

In order to solve the problem formulated in Section C, we consider the

method of dynamic programming. The first step is to define

W

= Min E / dtX( )=C
u(t) [J T

_t_T

(i-4o)

where we have regarded u - the mean value of u 1 - as a control variable.

We can rewrite the right hand side of Eq.(1-40) as follows:
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v(T,c) = Min A + = C] + o(J)

= A + Min p(X(T+A)[X(_) = C) V(T+A,X(T+A))dX + O(A 2) (1-41)

U
X

where p(X(T+A)IX(T ) = C) is the probability density of the state vector at

time m + A given X(T) = C (the transition probability density function).

This quantity is obtained by solving the associated Fokker-Planck equation.

Equation (1-41) is the building block by which we can generate numerical solu-

tions to the problem. The approximation in policy space algorithm is employed_

and basically this method involves the following steps:

1. Guess Vo(T_C )

2. Compute V(m,C) = A + Min E[Vn.I(7+A, X(T+A))IX(T )]
U

3. Iterate until the solution converges.

We are now ready to solve for the transition probability density function.

F. The Fokker-Planck Equation.

Doob (ll) has shown that the solution of Eq.(l-31) will be a Markov process

which can be defined by its transition probability density function

p(o, XO; t, X) (1-42)

which is the probability density that X(t) = X given X(o) = X o. In

addition s it can be shown that this probability density function satisfies the

Fokker-Planck equation associated with Eq.(l-31):

_P = b --82P. x2 --SP - u--8p - x 3

8t _x32 _xI _2 _2 _x3 _x3

(1-43)
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D
2

where b = _-. In order to solve Eq. (1-43) we regard u as a constant. This

_h_ only discrete values of control are a!!owed_is consistent with the fact _ "_

and also that u is held constant over the time interval g in the dynamic

programming solution. The boundary condition on Eq. (1-43) is

lira p(O, Xo; t,X) : 6(Xl-Xlo) 6(x2-x20) 6(x3-x30)
t-_

(1-_)

We proceed now to solve Eq.(l-43) using the Fourier transform technique.

we transform Eq.(1-43) in xI

First

b -iklXl/- p -iklx I _2pe dx I - _ e dx I + x 2

_' _t _x32 -

-ikl_1 ,_ -_lXl
_P e dx I + !U _9 e dx I

D
-i_ixI ,_ -i_ixI -_iXl :

8P e dx I 0

x3 _P e dx I - _ /pe dXl - _' x3 _3
_x z

(1-45)

If we define

"iklXl A p, (t, _, x2, x3 )pe dx I =

then Eq.(l-45) becomes

_pt

_t

- b BZp__ iklx2P' + u _p- + x3 8p'

_x32 + _x 2 _x 2

8p' - Gx 3

Transforming Eq. (1-46) in x 2 and defining

=0

_3

(1-46)

f "ik2x2 A p, ,(t, kl, k2, x3)/p'e dx 2 =
J
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we obtain

Bp, , 82p,, 8p,, _P',

- b --+ ik I- (i) + U '' + x3ik2P' - 8p'
_t _x32 8k2 ik2p ' ' - _x3 _x3

Finally, defining

-0 (i-47)

p - ik3x 3dx 3 ^''e A_p(t, kl, k2, k3 )

we have

"% ,% ,% ,%

A A "%

n . "% 5_2_.P+ iuk2 p + ik 2(i) _p 6p + 6p + 5_2_.P= 0
b(i_)2P - kl_2 _35t --- 6k3 _k3

which becomes

"% "% A

"%

+ i_ 2) p : o (1-48)

Equation (1-48) is a linear first order partial differential equation which has

the characteristic equations

dt dkl dk2

d-_:l ; _-_-: 0 ; _=- kI

,%

d_ dp 2 ^

= _k3 - k 2 ; _ = _ (bk 3 + i_2) P

These equations have the solutions (subscript o indicates initial values)

t = s ; k1 = klo ; k 2 = - kloS + k20 ;

k3 : e_Sk30 kloS klo kloe_S + --k20 (l_e_S) ; (1-49)
_2 + _
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A A

p = p(O) exp -

S

kloS '!

/ b e8s k30

b e

kloeSS' \2
klo + + k20 (1.eSS')i

_2 82 8 /

+ iu(- kloS' + k20 ) ds '\

Performing the integration in Eq.(1-50) and collecting terms yields

(1-5o)

^ ^ 2 s3 s 2se 8s s2

p = p(o) exp - b klo !_--'[-2'i,38+ Y " 7 + Y +

e2_s 1

2_5 285,

D

2 S e28s 2e _s 3 2

+ k20 y+ + +7

i 2s e28s 2se 8s e 28s

y j + +

2
ius

2 klo + in k20s

1

28

2s 2se 8s 2e 8s

1

_3
+ k20k30

2eBs i e 2_s _,.

82 82 82
/

)

(1-5l)

We now impose the boundary condition as follows:

1

P(O, Xo;S'Xl'X2'X3 ) = i_

^ _loxl ik2oX2 ik-oX-
p(s, klO ,k2( Fk30)e e e 5 5dklodk2odk30

But

p(o,Xlo,X2o,X3o;O,Xlo,x2_ X3o) : s(Xl-Xlo)s(x2_X2o)s(x3-x3o)

1 3 ik x ik x- 0
" 20 20 e 30 3 dk dk dk
p(O_ klo _k2(F _o)eikloXlOe i0 20 "-30

D
Thus we must have
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/8 -ikloX I -ik20x 2 -ik Ox(xl-Xlo)6(x2-x20)8(XB-X30)e e e 3 3dxldx2dx 3 =

^ - ikloXlo -ik20 x20 - ik3 oX30

= p(O, klo ,k20 ,k30 ) = e e e (I-5z)

Using Eq.(l-52), and solving Eqs.(l-49) for s, kl_ k2( F and k30 , Eq.(1-51)

becomes

^ i kle-6t kl e'6tk2 k2 kit -6t

p = exp - liklxlO + i(k2+klt) x20 + i 82 82 8 + _+8 _+8 k3e i_x30
F

+ b k12 t3

i382

,'kle-St
+

_ 82
i

t 2

-7+

+ k3e'St

t 2te 8t t2 e28t 1 + (k2+klt)2 t e28t 2e 8t 3
7- 7 + 7 + 285 285 7 + 283 83 + 283

kI e'Stk 2 k2 kit 2 e28t

+ --+ -- + k3e-St
82 8 6 8 28

2te 8t 2e 8t i 2t e28t

T+7-7 7
-2te 8t e28t 1

+ + (k2+klt)
82 83 83

{

2e 6t i e28t iut 2

62 82 6z z

1

+ kl(k2+klt)
26,

kle'St k1 e-Stk 2 k2 klt

+ kl 8 2 8 2 8 8 8

kle-St kI e-Stk 2 k 2 kit

82 82 8 8 6

- --k I + iu(k2+klt)t (1-53)

Simplifying Eq.(l-53) and collecting terms, we finally obtain

p = exp - k12 bt3 bt2 bt (l_2e-St) + b 1 . __e-28t',
38 83 + 8.3. 2 2 /

e-28t 2 b be "28t

+ 2e -St + k3 _ _
28 28

+ k22 bt + b 3/2
7 7 -

bt 2 bt b e-2_t

klk 2 _ + 8-_ - 2 + e2-St + 7 1 +

b e-28t klk3 b__t _2e-St + b 1 _ e-28tl
- 2e -St + k2k3. 7 1 + - 2e-St + 82 83
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+ ik I xlO + x20t + x30

+ ik3(e-Stx30 )

t ut2! ik 2 ++ -- + _, +

B 2 x20 x30

i e "St "_
+ ut

(z-54)

This expression can be recognized as the characteristic function of a Gaussian

density with mean values

e"St i t ut 2

_l = Xl0 + x20t + x30 62 _2 + -- + --2

, 1 e -#t

_2 = x20 + x30 _ # ,+ ut

_3 = e-Stx30

and covariance matrix (K)

kll = E[(Xl-Xl )2] = 2
bt 3

382

bt 2

83
+

/ e_2B t 1
bt (1 2e-6t) + b 1 !'

2 2 .,/

k22: E[(x2-12)2] =2 bt b 3/2 + 2e -6t - e-28t

+ _7 - 2

u

k33 = E[(x3-x3 )2] = 21b213 2_

bt 2

k12 : E[(Xl-Xll(X2-X2)] 132 +
bt (-2 + 2e -St) b (l + e "28t7 +7 -
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-- b (i + e-26t 2e"6t)
k23 = E[(x2-_2)(x3-x3)] = y

- bt b (i - e-28t)
kl3 = E[(Xl-[l)(X3-X3)] = y (-2e"St) + y

Of course, x3 could be carried along in the analysis as a possible refine-

ment, but here we will only concern ourselves with the marginal density of

xI and x2, and L will be integrated out of these equations.
5xI

is (KK=K-1; X= Ix2])

The result

p (0,xlO ,x20 ,x30; t,Xl, x2)

1

2 lKI1/ '(kk33) 1/2

. i
2

e

2
kkl3

kkll - kkl2 -
kk33

kk23kk13 kk23

kkl2 kk33 1_22"

kk23kk13

kk33

2

Equation (1-55) is used in conjunction with Eq.(1-41) to carry out the numerical

analysis of the stochastic minimum time problem.

G. Numerical Results with Known State.

As has already been indicated, the approximation in policy space

algorithm was used in the analysis. The initial guess for the value function

was given by the deterministic solution to the same problem. The target

neighborhood of the originwas taken as a rectangular area with boundaries

at ± 40 meters in the xI direction, and ± .05 meter/sec, in the x2

direction. Grid sizes of lO meters and .025 meter/sec, were used and gave the

desired accuracy. Due to considerations of computing time, the area of interest



41

was limited to ± i kin. by ± ._5 m.sec. Of course, solutions in larger

regions could be obtained if desired. Insight into the general solution

characteristics can be acquired, however, from the results in the area that

was considered.

The results appear in Fig. 1-16. A total of four runs were madeand the

resulting switching curves are shownfor each case. Tworuns were madeusing

a correlation time of 20 minutes for the attitude control limit cycle. It

should be noted that decreasing the correlation time has the sameeffect as

decreasing the variance of the noise. It is interesting to note that as the

noise gets large -- i.e., with its standard deviation equal to the value of

the control magnitude -- then the switching curve is pushed back near to the

xI axis. This is reasonable, though, since whenthe noise is the sameorder of

magnitude as the control we wish to avoid "wandering" as demonstrated in Fig.

1-18.

H. The Stochastic Minimum Time Problem with Estimated State Variables.

i. State Estimation.

We now turn to the more realistic case of when the state vector is not

known exactly, but must be estimated. For the purposes of analyzing the sto-

chastic minimum time problem, we would be interested in having the state esti-

mates in the rotated coordinate frame of Fig. (1-4). We therefore formulate the

estimation problem using polar coordinates and note that for particular cases

the additional G(t) degrees of rotation could subsequently be made conforming

with the definitions given in Eqs.(1-2) and (1-3), Section 2. Referring to

Fig. 1-19, the plant equations are given as follows:

= v__ . _2 " a sin G + x5 cos _ - x6 sin
r r
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UV= - _ + a cos (_ + xr cos _ + x_ sin (_
r 0 P

r =u (1-56)

= v/r

x5 =.  lX5+  l(t)

x6 = - _2x6 + _2(t)

where x5 and x 6 are the attitude and acceleration stochastic processes,

respectively, which are used in accordance with the previous discussion.

Furthermore, we presume that the following measurements are allowed on the

system:

(a) Range: hI = p = [r2 + R2 - 2rR cos(_ - _t)] I/2 + _3(t)

V

ru - Ru cos(6 - _t) + rR(_ - _) sin(e - mt)

(b) Range Rate: h 2 = ; = P

(R = Earth's orbital radius; _ = Earth's orbital ang_]ar velocity):

(c) Yaw Angle: h 3 = x 5 + _5(t)

(d) Low-Thrust Acceleration: h4 = x6 + _6(t)

where _3' _4' _5' and _6 are the error processes associated with the

observation measurements. We new assume that the linearized plant and observa-

tions equations are sufficiently accurate for our purposes, and therefore the

Kalman (12) filter equations yield the minimum variance estimate of the state

of the system. The error covariance matrix, P, satisfies the following

Ricatti differential equation:

= AP + PAT - pHTK-_P + GQG T (1-57)
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where
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2

where _i is the covariance of the process _i(t). Hence, with the

specification of the initial error covariance matrix, we may calculate P(t)

before launch using Eq. (1-57).

2. Optimization of Measurements.

Before continuing with the analysis of the stochastic minimum time con-

troller, we turn to the very meaningful and interesting question of measure-

ment optimization. We have specified in the previous section that accelerometer

and angular measurements should be available. If they are not, then the state

deviation uncertainties grow to enormous values by the time a mission would be

complete. We therefore ask to which of the two measurements, accelerometer or

angular, we should devote the most money. Putting this another way, suppose

that we are given a fixed total cost for the sensors of the type mentioned.

Then the question is how should we allocate the funds to derive a maximum return

from the sensors? Of course, the definition of the return is somewhat arbitrary,

and therefore we consider two possibilities.

T

2 2 k (P33 + p_4 ) dt(a) Pii + P22 + 2 2

O

(b)
PII(T) + P22(T) + k(P23(T) + P44(T))

(z-58)

These performance indices give an indication of how accurately the state of

the system is determined. We now assume that we pay a fixed price for each

order of magnitude of accuracy of the angular and acceleration measurements.

That is to say, if we are allocating a fixed amount of money, then

log _5 + log q6 = constant (i-59)
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We note here that it would be a simple matter to consider other cost speci-

fications, but to demonstrate the technique, Eq.(l-59) is assumed. It is

quite reasonable to assume that _5 and _6 possess lower bounds which are

necessitated by the level of sensor technology. The numerical results for

this problem are shown in Fig. 1-20. The values of Eqs. (1-58) are represented

using -12 for the constant in Eq.(l-59), and lO -I0 as the lower bound on

the standard deviation of both sensors. The optimization is made over

approximately 50 days of the Mars mission considered in earlier experiments.

It is obvious from examining Fig. 1-20 that accurate acceleration measurements

are to be preferred over accurate angular measurements for the mission under

consideration. The diagonal elements of the covariance matrix, as well as the

nominal state vector, are shown in Fig. 1-21 - 1-24 where the optimum observa-

tions have been assumed. For comparative purposes, the same quantities are

plotted in Figs. 1-25 - 1-28 using non-optimum, but admissible, values of the

measurement accuracies.

We conclude that optimization of the state estimation yields definite gains

for the system that was considered. This result lends motivation for a similar

analysis of other space missions.

3. An Algorithm for Determining the Optimum Switching Strategy for the

Stochastic Minimum Time Controller with State Estimation.

We now are ready to determine in what way our switching strategy would

change relative to uncertainties in the state variables. We saw in the last

section that the "state" of the system is actually given by a Gaussian density

function with a time varying covariance matrix. In order to use the numerical

approach described in Section E, we must determine in what way the transition

probability density function needs to be modified in order to account for

imprecisely known state variables. This will be done in the following section,
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where it will be assumed that P(t) can be approximated by a step function

with a fixed interval size d. It is now apparent that the transition

probability density function will vary with time along the nominal trajectory.

For this reason, we need to augment the algorithm described in Section E.

The technique we employ here will be to first compute the switching strategy

at nominal encounter time using the method of Section E. We then step back-

wards in time, at intervals of A, and determine the switching strategy at

each interval by the following method:

(1) Compute V(T, C) by the method in Section E.

(2) Compute V(T-nA, C) = A + Min En[V(T-(n-I)A,X(T-(n-I)A)IX(T-nA)] , and
U

store u(T-nA, C), for n : i, 2, .'' N where N is the smallest number

such that T - NA < O. In this formula, En indicates that the expectation

is to be calculated using the transition probability density function at

time T - nA.

We are now ready to solve for the modified transition probability density

function.

4. The Transition Probability Density Function with State Variable

Uncertainties.

The new transition probability density function can be obtained using the

following integral:

P(X(t) IP(X(O)) ) =

g

_J

Initial States X(O)

P(transition to X(t)IX(O))P(Xo)dX 0 (1-60)

The first term in the integral is given by Eq.(l-55), and can be represented as

p(O, Xo;t,X ) = i

)TM'I(x-(AXo+B))
e

where
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1

A= ; B=

0

-u
i

t i
!

J

_J

-6t
e i t ut 2

X30 87 _ + _ + 2

-_t
1 e

X30 _ 6 + ut

I
I
I

!

The second term in the integrand is given by the Kalman estimate which can

be represented as

P(xo) =
1 -(Xo- _ )Tp-I (Xo- _ )

e

where _ is the estimated state, and 2P is the error covariance matrix

which satisfies Eq. (1-57). We have noted that P is to be approximated by

a step function. Therefore we let P(T-nA) = Cn. Eq.(1-60) now becomes

p(x(t)iP(X(O)) ) = / 1 "(X-(AXo+B))_-I(x-(AXo +B))

X(O) _IMII/2 e

-(Xo-_)TCni(Xo-_)
e dX

0
(l-61)

To carry out this integration we define

A-_ -A'_ :_D

Then Eq.(l-61) becomes

P(X(t) IP(X(O)) ) =
1 _ -(A(Xo-D))TM'I(A(Xo -D) ) "(Xo'_)TCnl(Xo-_ )

e e dX

_21Mll/21CnlV2 j o

(z-62)



48

Now let

_,: D-. --A-Ix- A-%-_

and Eq.(1-62) becomes

P(X(t) IP(X(0)) ) =

1 r-(x-_)%%'lA(x-_)
_e

JIMil/21Cnll/2J

m

-XC
n

dX

2 IMCn 11/2 j e

+ 2ETATM-IAx-ET (ATM'IA)E} dX̂

(1-63)

Setting

(c]1 "IA) ^+ ATM i/2x = X

equation (1-63) becomes

P(X(t)IP(X(O)) ) =
e-ET(ATM'IA)E if -x*Tx_+ET2ATM-IA(Cn I+ATM-IA)-I/EX* *

21MCnlI/elC_I+ATM_IAII/2J e dXn
(1-64)

Completing the square and performing the integration yields

1

P(X(t) IP(X(O)) : _IMC(CnI+ATM_IA)II/2 exp[-ET(ATM-IA)E+ETATM-IA(CnI+ATM-IA)'I/2

[ETATM-IA( CnI+ATM-IA)-I/2 ]T}
1

_IMC n (CnI+ATM'IA)11/2

exp [-E T (ATM-IA+ATM-IA (Cnl+ATM - 1A )-IATM- IA )E }
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We now substitute for E to obtain

P(X(t) IP(X(O)) =
1

_IMC n(CnI+ATM.IA)11/2 exp[- (X-B-A_)TA-IT(ATM-IA-ATM-IA (K'I+ATM-IA)-I

ATM-IA)A'I (X- (B+Ag) )}

This simplifies to finally yield

P(X(t)IP(X(O)) ) =
1

IMc(cn I+ATM-IA)I 1/2

exp[- (X- (A_+B)) _-i (I-A(CnI+ATM-I A )-IATM-I )

It is interesting to note the differences between Eq.(1-65) and Eq.(1-55). In

Eq.(1-65) we note that the true state is now replaced by its estimate, _, and

also that the original covariance matrix inverse, M-13 in Eq.(1-19) is degraded

in Eq.(1-65) by a factor

I - A(CnI+ATM'IA)-IATM "I

5. Numerical Results for the Case of Estimated State Variables.

Numerical experiments were performed in the unknown state case in exactly

the same way as previously described except that this time Eq.(1-65) was used

for the transition probability density function. Generally speaking, intro-

ducing uncertaintities in the state variables has the same general effect as

increasing the magnitude of the disturbances on the space vehicle. Three

numerical experiments were made using selected system parameters which are

indicated in Fig. 1-29.
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1.4. Summary and Future Work.

In this report we have emphasized the influence of noisy actuators on

a low-thrust guidance system. It has been shown that the somewhat "classical"

system determined via the second variation technique fails to yield adequate

terminal accuracy when subjected to the noise inputs which one could normally

expect. In fact, the noise level would most likely be comparable in magnitude

to the control forces, and for that reason "small noise" assumptions are

invalid.

The approach taken here has been to design a guidance system which not

only demands the desired terminal accuracy, but also minimizes the fuel re-

quired to perform that task. The analysis of this system when it is subjected

to stochastic inputs led to rather interesting results. It was shown that the

"separation" property of estimation and control -- which one obtains with the

usual case of linear dynamics, Gaussian noise, and least squares performance

index -- is not obtained using a nonlinear controller of the type considered.

In other words 3 one cannot merely substitute the estimated state variables for

their actual values in a deterministic controller. In fact, for the important

aspect of this problem where the noise becomes comparable in magnitude to the

control, it was found that a switching strategy far different from the determin-

istic solution must be used. To use the deterministic strategy in such cases

might bring a disasterous ending to the space mission.

In Appendix A_ a particular example of the inadequacy of the "optimum",

or neighboring-optimal guidance system is demonstrated. In future reports, it

is planned to carry out a similar analysis of other missions of current interest

to JPL.
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APPENDIX A

ANALYSIS OF _ NEIG_ORLNG-0PTIMAL GUIDANCE SYSTEM ACCL_CY

FOR A CONSTANT THRLrST; MIN]]_UM-TIME MARS RENDEZVOUS MISSION

In the following, the complete numerical analysis cf the accuracy of

a guidance system obtained by means of the second-variation optimization

technique is described. The first step is to obtain the nominal, or open

loop trajectory, and for that purpose a constant acceleration level of

.78 x lO "3 m./sec 2 is assumed which corresponds to a 3 oz. thrust applied to

a 2500 lb. space vehicle. Since the minimum time Mars rendezvous is a free

terminal time problem, we use the analytical artifice of normalized time to

convert the free terminal time problem into the more usual fixed time problem.

This is done by defining

t = T_ T e[O, 1] (A-l)

where t is the true time and _ is the normalized time. Here T represents

the unknown terminal time which is treated as a state variable by adjoining

its dynamical equation

T=O

It is easily seen that

__ dxdx T--
dT = dt

and thus we can consider the following equivalent dynamical system (note:

dotted variables represent derivatives with respect to T)

V 2
,_ -- _ a sin __ T

2
r r /
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v = (_ mUVr+ a cos _)T

=uT

vT
m

r

T=O

If at this point we form the Hamiltonian of the optimization proble M and carry

out its minimization with respect to _ according to Pontryagin's maximum

principle, we can obtain the canonic differential equations for the system

state variables and Lagrange multipliers:

2 akI

_=iv
i....................i T

r r_ W_+ _

uv a k2
i_ .... r jm

r _,</kl 2 + _22 i

_" =uT

(A-2)

T=0

k2vT

i I : _- X3T

2klTV k2Tu k4T
= +

"'2 r r r
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x_ z_xZ x2_T _T
_3=----f ---'_-_-- - Z rr r3 r

_4 = 0

= " !- 2 2 r _kl__2
[5 - i - Xli r r E \i k I + _2

The given boundary conditions_ and the transversality conditions associated with

the optimization problem yield the boundarY values necessary for the solution

ofsq.,(A-z)-

_(o): o

,X1) = o

v(1): v_s

(A-3)

r(1) = r_ms
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Using the quasilinearization method, a solution of Eq.(A-2) was determined

which satisfies the required boundary conditions.

At this point we are ready to consider the second variation, or

neighboring optimal guidance system. Although more elegant derivations have

•been given, the method is quite equivalent to linearizing Eqs.(A-2), and

using these to approximate the behavior of the system. Therefore suppose

that at time T we have known state variable deviations equal to

col[6u(_), 6v(_), 6r(T), 6e(T)], and we wish to determine the manner in which

these errors are nulled in the optimum system. From the theory of linear

differential equations, we must have

6u(T)

6v(_)

_r(T)

6e(T)

6T(_)

_l(_)

C8X5(T)

0

0

0

@_S 6T(1)

6T(1)

6_2(i)

8_3(1)

6_4(i)

-8_4(i)_MARS

(A-4)

where _ is the (10 x i0) fundamental matrix of the linearized equations,

and satisfies

= A(_) _ _(0) = I

Here A is the Jacobian matrix of Eqs.(A-2) evaluated along the nominal

state and I_grange multiplier vectors. Since Eqs.(A-4) are lO linear
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equations in lO unknowns, we may determine the unknown initial values in

the following form

r

6T(T)

B(T)

6u

8v

6r

6e
A_

where B(T) is a 5 x 4 matrix (note that 8kS(T) : 0). Hence we may write

_u ~

_v

i +
6v

J

6r

69

where _(i) is defined to be the first four terms of the first four rows of

the fundamental matrix, and _(2) represents the fifth through the ninth

terms of the first four rows of the fundamental matrix. Eq.(A-5) therefore rep-

resents the differential equation satisfied by the state variable deviations.

In order to complete the analysis, we must now adjoin to the system the

noise terms representing the attitude and thrust vector variations. One obtains

a result completely analogous to Eq.(l-56):

= CX + G (A-6)

where X A col[Su, 6v, 6r, 69, x5, x6] and
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L

_l + _2B

0 0 0 0

0 0 0 0

COS (%

sin (_

0

0

-B 1

0

-sin

COS (Z

0

0

0

-f3 2

0 0

0 0

0 0

G=
0 0

1 0 ,

0 1._j

and _l

var lance s

given by

A

where

and _2 are independent, zero mean, Gaussian, white noises with

2 2
_l and _2 " The state deviation at time _ is therefore

'_l(t)
_(_,t) G;

[ga(t)i0 t
J

dt

is the fundamental matrix of Eq.(A-6). The covariance of the

deviations is then given by

!
T

0

(tl) , . _l(t )- ,_- 2 _T

i dt 2
_) _ (_,t 2) G(t 2) g2(t2) ;

T
PA

(_,t) K _T(m,t)dt

-o

(A-7)

(A-8)



where K =

w

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
0 0 0 0 _i

0 0 0 0 0
L.
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0 0

0 0

0

0

°l
_22_

Using Eq. (A-8), we can numerically evaluate the covariance of the state

deviations. For the case when _l = c2 = a/6OO, and _l = 62 = 1/lO0 hrs.,

we find that the standard deviations of the state variables after _ of the

mission has been completed are about lO0 million kilometers in position, and

30 kilometers/sec, in velocity. These errors are far greater than predicted

in Section 3-D probably because thrust level control is not permitted in this

system. It is the tendency of linear-regular controllers to make strong

corrections near the terminal mission time -- this amounts to approximately

the final 10% of the mission in this example. However, in order to fully

correct the enormous deviations cited above, the control demanded would

definitely not be available, and the errors could not be significantly reduced.

A run was also made using G1 = _2 = O, and the resulting state deviations were

comparable to those cited above. Finally, the case when x5 and x6 are

white noises (with the same variances as given above) was investigated, and the

resulting errors were approximately one half as great as with the correlated

noise.
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VEHICLE LOCATION AT TIME t

(OFF THE NOMINAL TRAJECTORY)

SHOWING LOW-THRUST AND

SUN-GRAVITY VECTORS 7
NOMINAL TRAJECTORY (PATH /

VEHICLE WOULD FOLLOW WITH .._ '_ /

CORRECT INJECTION CONDITIONS _'+Q_,_\\=, __ _/

AND NO DISTURBANCES) =/ _u _1_

x3+ /

RIGIN AT TIME t, AT

/ I / POINT IN SPACE WHERE

SUN _ [ // VEHICLE WOULD BE IF

/d(t)] Lc / _x,' IT FLEW THE NOMINAL

Y K '
[ [ _-ORIGIN FIXED AT POINT IN
_. -, SPACE WHERE ION ENGINE IS

TURNED ON (NOMINAL VALUE)

Fig.l-1. Definition of the coordinate frames (x_,x_) and (Xl, X3).

Fig.l-2. A low-thrust ion-engine.
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_U

TO SUN _ -_

TO SUN

TO SUN

Fig.l-3. The nine allowable states of the ion-engine thrust vector. _ = O.



61

OSUN
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F

Fig. i-4.
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coordinate frame.

/

/
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\ / \ _._,_o.,,_,
V _ PROPULSION OFF

\
\

m

Fig .1-5. A low-thrust trajectory for a Jupiter mission.

../_..(.v,(o)._,2(o))

OPTIMAL PATH

u I =--_u --_ _'_\1

_ SWITCHING

BOUNDARY

Fig.l-6. Definition of the "switching boundary" in the (yl_Y2) plane.
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sin _ (t)

SUM

/

(-;k3 (0) , + ;k4 (0)) sin _(f)

t + X2(o)) cos# (t)

_-_, (-X 3 (0) t + _-4 (o)) cos/_ (t)

I / \ /--SUM

Fig.l-7. Control function switchings for the second solution.
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I000
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I
I

I
I
I
I
I

ll

TIME, seconds x I0 -3

1265

Fig.l-8 - Fig.l-13. Results obtained for the nonlinear minimum-time, nonlinear

minimum-fuel, and linear control systems.(1-8) The xI position deviation;(1-9)

the x3 position deviation;(1-10) the xI velocity deviation;(1-11) the x3

velocity deviation;(1-12) the control variable Ul; and (1-13) the control

variable u2.
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Steady state velocity deviations for the second-variation

control system.
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Fig.l-15. Steady state position deviations for the second-variation
control system.
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.3O

%

20

t, minutes

Fig.l-i 7 . A typical sample function for the Ornstein-Uhlenbeck Stochastic

process (1/B = 20 minutes, u = .25 x 10 -4 m./sec.23 o = .2u =

.05 x lO -4 m./sec. 2)

x2

._ET

INITIAL CONDITION

Xl

+U

+U

U
OPTIMAL
SWITCHING
CURVE

PATH VEHICLE MAY
FOLLOW IF SWITCHING
IS NOT PROPERLY MADE
(LARGE NOISE CASE).

Fig.l-18. Demonstration of "wandering" that may occur in presence of large
noises.
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SPACECRAFT

SUN

ORBITAL PATH OF

ORBITAL PATH OF

Fig.l-19. Definition of the polar coordinate frame.
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Fig.l-20. Optimization of yaw angle (_z)

2 k2 2 2 u
accuracies for performnuce indices (a) _ p_ + P22 + (P33 + P44 ) dt and

(b) Pll(T) + P22(T) + k(P33(T ) + P44(T)) O

log %

(_5_ and low-thrust acceleration
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OPTIMALLY CONTROLLED SOFT LANDING IN IMPERFECTLY

KNOWN PLANETARY A_]_OSPEERE

- A Preliminary Study for Adaptive Soft Landing -

2.1. Introduction.

By optimally controlled soft landing we mean a controlled landing with

minimum fuel consumption, and, prescribed terminal conditions onthe

vehicle's trajectory which must be satisfied.

The space vehicle is supposed to be a known dynamic system in that sense

that the functional form of the dynamic equations governing the vehicle's

behaviour are known. The gasodynamic forces, however, which act on the vehicle

descending through a planetary atmosphere are known with very limited accuracy

due to our very imperfect and, for the moment, hardly improvable knowledge on

planetary atmospheric data. (The basic data are: atmospheric mass density,

atmospheric pressure and the velocity of sound; all these data are functions of

the height above the planet's surface.) For that very reason we have to assume

that at least some of the basic parameters of the dynamic equations governing

the vehicle's behaviour during the phase of atmospheric flight are very imper-

fectly known. We have to assume, furthermore, that there would be unknown

(external) disturbances acting on the descending vehicle, and, that the given

measurements on the state of the vehicle would be corrupted with significant

noise. Needless to emphasize that the very limitations of our knowledge on the

relevant planetary atmospheric data have a considerable effect on trajectory

and performance calculations for the atmospheric entry and landing phase of a

planetary mission.
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P

D

In our study we separate the motion of the center of gravity from the

motion of the vehicle about its center of gravity and will consider only

the motion of the vehicle's center of gravity. This separation is justified

in the case of undertaking trajectory and performance analysis only. (In

the case of undertaking stability and attitude control analysis one mainly

considers the motion about the vehicle's center of gravity.) We will consider,

furthermore, that the vehicle's trajectory lies in one plane, defined by the

radius vector from the planet's center to the landing point and by the

initial (entry) azimuth direction.

In the present study the given problems are considered from the point of

view of Modern Control Theory, and_ in two, seemingly distinct parts. After

outlining the relevant dynamic equations of atmospheric entry (Section 2.2)

we deal (1) with Optimal Thrust Programs by using Pontryagin's Maximum Principle

and assuming known parameters in the state equations (Sections 2.3-4), and,

(2) with Non-linear Sequential State and Parameter Estimation based on Dynamic

Programming (Sections 2.5-10). New results are presented in form of Asymptotic

Non-linear Filter (Section 2.11). In the Summary Section of this Chapter the

connection between Optimal Thrust Programs and Sequential Estimation is briefly

explained and the future work is indicated.

The necessary data we have applied in the presented numerical calculations

are only order-of-magnitude data for some typical planetary mission. (But some

of the applied data are quite close to a Mars Mission.) In this study we

have mainly intended to present and elaborate modern viewRoints and techniques

which are relevant to handle the complex problem of optimally controlled soft

landing in imperfectly known planetary atmosphere.

D
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2.2. Dynamics of Atmospheric Entry.

During atmospheric entry the motion of the space vehicle is governed by

its own inertia, by the gravitational force and by gas-dynamic forces. The

gravitational force acts toward the planet's center. The gas-dynamic drag

force acts antiparallel to the vehicle's motion. The gas-dynamic lift force

(and centrifugal force) act normal to the vehicle's motion.

In deriving the equations of motion of the space vehicle we only consider

(a) the motion of the center of gravity of the vehicle, and (b) two-degrees-of-

freedom (planar) motions of the center of gravity of the vehicle. As a conveni-

ent reference system we will use a trajectory-fixed coordinate system with its

origin located at the center of gravity of the space vehicle, and, with unit

vectors e D and e L parallel and perpendicular to the vehicle's motion. The

path angle will be defined as the angle between the velocity vector and the

local (instantaneous) horizontal. (See Fig. 2.2.1. ) We assume, furthermore,

a non-rotating, spherical planet with quiet (non-moving) atmosphere. The forces

acting on the space vehicle are shown in Fig. 2.2.2. We assume that the rocket

thrust is designed so that it always acts in the tangential direction.

According to Newton's second law the momentum balances in the tangential

(eD) and normal (eL) direction of the motion give the following differential

equations :

where

dv F
m W_ = m-_ singz- D - T

r

(2.2.1)

d(_ =m(F V2)cos _ - L (2.2.2)
mv_ 2 r

r

m =mass of the vehicle;

v = velocity of the vehicle;

F

r2 = g, acceleration of gravity (F = GM, with M:

and G: gravitational constant );

mass of the planet
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D

D

D

D, L = gas-dynamic drag and lift forces, respectively;

T = rocket thrust force, designed to be acting always in the

tangential direction of the vehicle's motion;

r,G = defined on Fig. 2.2.1.

The term (v2/r) cos _ in Eq.(2.2.2) is a fictitious centrifugal force which

compensates for the curvature of the spherical planet.

The altitude "h" of the vehicle above the planet's surface and the ground

range "s" of the vehicle, measured from the entry reference vertical, are

given by

dh (2.2.3)
d-_ = - v sin

d_As: R_v cos_ (2.2.4)
dt r

where R is defined on Fig. 2.2.1.

The gas-dynamic forces, D and L, are dependent on the dynamic pressure

(pv2)/2, where p = atmospheric density and v = the vehicle's velocity. We

have
O

i 2 (2.2._)
D = CDA _ pv

1 2 (2.2.6)

where CD, CL = dimensionless gas-dynamic coefficients in the tangential and

normal direction of the motion, characterizing the geometry of

a given body, and, are functions of the Mach-number as well as

of the angle of attack. (The Mach number is a function of the

local speed of sound. )
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A = relevant reference area of the moving body.

For the atmosphere's density variation with the altitude "h" we will

assume the exponential distribution:

P = PO exp(- bh) (2,2.7)

which is derived for an isothermal atmosphere in hydrostatic equilibrium.

In Eq. (2.2.7) :

PO = density of the atmosphere on the planets surface.

b

The rocket thrust force,

= inverse scale factor. (Atmospheric constant, is dependent on

the planet's gravitational attraction and on the temperature and

composition of the planetary atmosphere.)

in Eq.(2.2.1) is given by

dm

T=_(Ve-V); O_T_T x (2.2.8)

where v = velocity of the exhaust gas relative to the vehicle
e

T = max_umvalue of T.
max

In our calculations we will make the following assumptions :

F
(a) -_ = g = constant

r

(b) R >> h, hence r _ R = constant

dm
(c) Ivel >> Ivl, hence T _ ve
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L

(d) _ = O, which implies a pure gravity-turn ballistic descent,

since ±llv.

By introducing the following notations

K ,AI
= _ CDAPo ; G = T (control force) (2.2.9)

and substituting Eqs.(2.2.5-9) into Eqs.(2.2.1-4) and remembering the assumptions

specified above, we obtain the following equations:

h = - v sin (X (2.2.10)

s = v COS _ (2.2.11)

1 K' exp(- bh) v 2 1v = g sing - _ - _ _ (2.2.12)

_= g
v v)R cos _ (2.2.13)

which are four, coupled, ordinary non-linear differential equations describing

the planar, descending motion of a pure gravity-turn ballistic vehicle in a

planetary atmosphere.

In the case of a solely vertical descent (_ _ 9O°, _ _ O) Eqs.(2.2.10-13)

are simplified to

: - v (2.2.14)

1 K' exp(- bh) v 2 1= g - --m - _ _ (2.2.15)
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2.3. Optimal Thrust Program for Vertical Atmospheric Descent and Soft T_uding.

In this Section the term "optimality" will be used in the sense of Modern

Control Theory. Hence Optimal Thrust Program is called an admissible thrust

program (= admissible control) which transfers the space vehicle from a given

initial state to the prescribed terminal state and minimizes the "cost function".

As a natural "cost function" we consider the consumed fuel:

T
#-

: dt
.J

0

where T = terminal time (free)

= mass flow rate (decreasing)

The corresponding motion of the vehicle is called an Optimal Trajectory. The

Thrust Program (or, equivalently, the Control) is called admissible if it

satisfies the imposed constraints in the period of control.

In view of Eqs.(2.2.8-9) and of Assumption (c) there, the Control _ (the

rocket thrust) is given by

B = _Ive , 0 < _5 < Gmax (2.3.2)

(The control force 8 could also be written in terms of the specific impulse

Isp of the rocket engine, since v e = Ispg , and therefore 8 = Ispgm.)

In this Section we will consider one-level, on-off, non-stop thrust motors

constituting the control force 8. (By "non-stop" we mean motors which can stop

just by burning out if once they are on.) Hence we have the following imposed

constraint on the control:

0{o
% in a finite time period T.

(2.3.3)
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As prescribed terminal conditions we consider

h(_) = O

v(T) = O

m(T) = mf

(2.3.4)

where h = height above the planet's surface

v = velocity

mf = final mass which has to be delivered to the planet's surface.

Taking Eqs.(2.3.1-4) into consideration one can see that the Optimal

(= Minimal) Thrust Program is equivalent to the minimal time problem. (In

fact the "cost function" S is a monotone increasing function of the terminal

time T. ) Thus Optimal Thrust Program can be assured by quoting existence

theorems for time-optimal controls.[Ref.1]

By introducing

A
xI = h (vertical position above the planet's surface)

A (velocity)
X 2 =V

and augmenting the state space by defining

A (mass of the vehicle)
X 3 --m

then, from Eqs.(2.2.14-15) and (2.3.2), we obtain the following system equations:

Xl : " x2 (2.3.5)
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1

_i K,exp(-bxD x22-_x2 = g x3
(2.3.6)

(2.3.7)

with prescribed terminal conditions

Xl(_) : x2(T ) : 0 , x3(T ) : mf (2.3.8)

and the "cost function" (= consumed fuel) is given by

T
t"

= - __3 dt

0

(2.3.9)

In order to obtain the form of the Optimal Thrust Program we apply the

Pontryagin Maximum Principle.[1] The Hamiltonian "H" for the minimal time

problem becomes:

1 B
H = - klX2 + ;k.2[g - x_ K'exp(- bXl) x22 - x_ 15] - k3 _ee

(2.3.10)

where the auxiliary variables kl, k2, k3 are nontrivial solutions of the

system of adjoint equations:

K' 2

_1: - _ = - _2_ bx2exp(-bXl) (2.3.11)

6H K'

_2 = - _ = kl + 2X2x2 _3 exp(- bXl)

_I-I X2 2

i 3 = - = X3 2 K'exp(- bxl)x 2 +

(2.3.12)

(2.3.13)
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_H
Since m = 0

_6

maximized by takirg

gires
k2 _3

x3 ve
= O, we see that the Hamiltonian is

fSmax' whenever

0 , whenever

x3 ve

x3 ve

>0

<0

(2.3.14)

In the case of

k2 k3
+ -- = 0 (2.3.15)

x3 ve

is indeterminate. Equation (2.3.15) expresses the singularity condition.

It can be shown, however, (also by using physical reasoning) that there is no

singular control for that problem we consider here since relation (2.3.15)

cannot hold on any finite closed interval in [0, T].

Relation (2.3.14) expresses the fact that the Optimal Thrust Program is

of the Bang-Bang Type. This means that the Optimal Thrust Program will consist

of either full thrust from the time considered (= initiation of the terminal

phase of the soft landing mission) until touchdown, or a period of zero thrust

(= free fall) followed by full thrust until touchdown.

In order to synthesize the Optimal Thrust Program we have to determine an

appropriate switching function. The development of the switching function con-

sists in determining a relation F(Xl, X2,X3) = O. If the given maximumthrust

is applied continuously from the moment when this relation is first satisfied,

a soft landing can be achieved.
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P

A theoretically possible way for obtaining the switching function would

be to integrate the equations of motion, Eqs.(2.3.5-7) under the assumption

= 8m in the time interval [0,t'], and determining the relation which must

exist between the initial values of the state variables [Xl(O ) = Xo, x2(O ) = Vo,

x3(O ) = mO] in order to achieve a soft landing in a time t'. Then, by

eliminating the free time parameter t', we could obtain an expression

F(Xo, Vo, mo) = 0 in closed Form for the switching function.

Unfortunately, it is impossible to carry out the integration of Eqs.(2.3.5-7)

analytically. (Would it be possible, we were still faced with the problem of

eliminating t'. )*

The only way of developing the switching function is to integrate Eqs.

(2.3.5-7) numerically in backward time. Or equivalently: integrate Eqs. (2.3.5-7)

as they are from t = 0 to t = T (just change the sign of x3) and use the

prescribed terminal conditions as initial conditions. Then we obtain the

switching function F(Xo, Vo, mo)= 0 as tabulated numbers for time "t" as

parameter. (0 g t g T = chosen maximum time.)

In the present stage of investigation we were mainly interested in the over-

all gas-dynamic braking effect of a planetary atmosphere as far as the development

of the switching functions is concerned. We made two types of calculations:

The equations of motion can be integrated analytically in the case of no gas

dynamic drag, or, in the case of homogeneous atmospher e with gas dynamic

drag linearly dependent on velocity. But eliminating t' would still require

solution of transcendental algebraic equations in these cases, too.

D
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(i) With gas-dynamic drag:

(2) Without gas-dynamic drag:

(a) K' = 3.10 "3 (kg/m)

b --1.5 10 -4 (m-1)

(b) K' = 6.10 -3 (kg/m)

b = 1.5 10 -4 (m"l)

(See Eqs.(2.3.5-7), but without the

velocity-dependent term in the second equation.)

For the other constants we used the following values:

mf : 120 (kg)

v e = 1800 (m/sec)

g = 3 (m/sec 2)

Iml = 1 (kg/sec), constant, since we assume

m(t) = m0 - at (2.3.16)

The integrations were carried out on the IBM 7094 computer using Runge-

Kutta-Gill method together with the Adams-Moulton predictor-corrector formulas

in the variable mode version (= automatic control of error) of the CIT subroutine

called DEQ. The equations were integrated in a time interval 0 g t m 120 (sec.)

We used At = O.1 sec for the integration step and E = 1.10 -6 for the maximum

allowable truncation error. Some representative results are tabulated below

and are depicted in Fig. 2.3.1.

NB: the tabulated and depicted switchin 6 function is_ at the same tim%

the actual optimal trajectory with time or mass as parameter_ starting with a

given set of values of hOA___E0__20 (or to) and reversin_ the time we obtain

the actual optimal trajectory for the chosen initial values and ending at

x I = x2 = 0 and x3 = m___._f.
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2.4. Optimal Thrust Program for Ballistic Descent.

Regardi._ Optimal Th_must Program for ballistic descent we follow the

same considerations and assumptions on "cost function" and control constraint

as we did for vertical descent in the previous Section. (See Eqs.(2.3.1-3))

As prescribed terminal conditions we consider now:

h(T) : 3000 (m)

: 0

= 84°

v(T) : 20 (m/sec)

m(T) = mf = 120 (kg)

(2.4.1)

These terminal conditions mean that the rocket thrust stops at 3000 (m) above

the planet's surface. (The ground range "s" is measured from that point.)

In that moment the vehicle's path angle has to be 84 ° below the local horizontal,

and, the vehicle's velocity and mass must be 20 (m/sec) and 120 (kg), respect-

ively. From that moment on the vehicle continues a parachute mode descent to

the planet's surface.

Taking Eqs. (2.3.1-3, 2.4.1) into consideration one can see that the Optimal

(= Minimal) Thrust Program for ballistic descent is equivalent to the minimal

time problem, as it was for vertical descent.

By introducing

A

xI = h (altitude above the planet's surface)

A
x 2 = s (ground range)
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A

x 3 = _ (path angle_ measured below the local horizontal)

A (velocity)
X 4 = V

and augmenting the state space by defining

A

x 5 = m (mass of the vehicle)

then from Eqs.(2.2.10-13) and (2.3.2) we obtain the following system equations:

x I = - x4 sin x 3 (2.4.2)

x 2 = x 4 cos x 3
(2.4.3)

x3=
(2.4.4)

1

- i__ K' exp(- bXl) x_ - _5 _½4 : g sin x3 x5
(2.4.5)

_5 = - _ (2.4.6)
e

with prescribed terminal conditions:

Xl(m ) : 3000 (m); x2(T ) = 0

x3(T ) = 840; x4(T ) = 20 (m/sec), Xs(T ) = 120 (kg)

and, the "cost function" is given by



T

: - _ x5 dt
,J

0
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In order to obtain the form of the Optimal Thrust Program we again apply

the Pontryagin Maximum Principle [Ref. 1]. The Hamiltonian "H" for the

minimal time problem becomes •

(x_ x4 \ _"- _ n, cos x_ + k},g sin x_ - _ K'.
H = klx4sin x3 + k2x4c°s x3 + k3 R // j _ j x5

i _ f3

• ex (-bx lxX-g (2.4.7)

where the auxiliary variables

system of adjoint equations:

kl, .'' , k5 &re nontrivial solutions of the

K-- 2
k4 x5 b exp(- bXl) x4

(2.4.8)

= - =o

g x4"__3 = _x3_ = klX4COS x3 + _x4sin x3 + k3_x4 R i sin x3 -
/

k4 g cos x3

(2.4.9)

(2.4.io)

!l "

_4 = - _x'--48I-I= klsi n x3 " k2c°s x3 + k3 cos x3(_ + _ +

X 4

2__ K' exp(- bxl) x4
k4 x5

_H = k4

_5 = _x} -_ K' exp(- bXl) x_ +

8H x4 _5

Since -_ = 0 gives x 5 + rive = O, we see that the Hamiltonian is

maximized by taking

(2.4.11)

(2.4.12)
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Gmax' whenever
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}'4 k5

x5 v e
>0

0 , whenever K4 k5--+ -- <0

,., x 5 v e

(2.4.13)

x4 x5
-- + -- : o (z.4.14)
X 5 v e

is indeterminate. Equation (2.4.14) expresses the singularity condition.

But for this problem there is no singular control since relation (2.4.14)

cannot hold on any finite closed intewall in [03T]. (This fact is clear for

physical reasons, too.)

Relation (2.4.13) expresses the fact that the Optimal Thrust Program for

the considered problem is of the Bang-Bang type.

In order to synthesize the Optimal Thrust Program we have to determine an

appropriate switching function. The evaluation of the switching function consists

in determining a relation F(Xl, X2,X3_X4,X5) = O. If the given maximum thrust

is applied continuously from the moment when this relation is first satisfied,

the prescribed terminal conditions can be achieved.

The only way of evaluating the switching function in this case is to

integrate Eqs.(2.4.2-6) numerically in backward time. Or equivalently: inte-

grate Eqs.(2.4.2-6) as they are from t = 0 to t = T (just change the sign of

Xs) and use the prescribed terminal conditions as initial conditions (just

change the sign of x4(T ) in using it as an initial condition.) Then we obtain

the switching function F(ho, So, So, Vo, mo) = 0 as tabulated numbers for time "t"

as parameter. (0 _ t _ T = chosen maximum time.)

In order to investigate the gas-dynamic slowing-down effect of a planetary

atmosphere as far as the evaluation of the switching function is concerned we

made the following calculations:
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(a) K' = 3.10 .3 (kg/m)

b : 1.5 10-4 (m"l)

(b) K' = 6.10 -3 (kg/m)

b = 1.5 10.4 (m-I)

(2) Without atmosphere. (See Eqs.(2.4.2-6), but using Eq.(2.4.5) without

the velocity dependent term.)

We have applied the following values for the other constants:

mf = 120 (kg)

ve = 1800 (m/sec)

g = 3 (m/sec2)

R = 3.106 (m)

Iml = 1 (kg/sec), constant, since we assume

m(t) = m0 - at (2.4.15)

The integrations were carried out on the IBM 7094 computer using the

variable mode version of the CIT subroutine called DEQ. The equations were

integrated in 0 m t g 120 (sec) by At = O.1 step. _ = 1.10 -6 was used for

the maximum allowable truncation error. Some representative results are tabu-

lated below and are depicted on Fig. 2.4.1.

NB: The tabulated and depicted switching function are, at the same time,

the actual optimal surfaces ; starting with a given set of values of ho, So,

(_0' Vo' m0 (or to) and reversing the time we obtain the actual optimal

surface for the chosen initial values and ending at h(T), s(T), (Z(T), v(T),
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The purpose of a fuel optimization study (such as those which are

presented in this and in the previous sections) is to develop a system which

accomplishes the terminal phase of the mission with an efficient utilization

of fuel. Computation of the minimum fuel required for a given mission may be

used as a guide in specifying fuel requirements.

It is obvious, however, hhat arriving the prescribed terminal manifold

along the optimal trajectory (= switching curve) presupposes a precisely

precalculated switching curve, and, a precise knowledge of the current state

of the space vehicle. (The Pontryagin Maximum Principle determines an open-

loop control.) Disregarding the limitations .of the measuring instruments, the

required precision is very much affected by the applied atmospheric parameter

values. The switching curves and surfaces in Figs. 2.3.1 and 2.4.1, calculated

for different K' values, illustrate how sensitive these trajectories are to

uncertainties in the value of the parameter K' in the dynamic equations. The

applied values of K', 3.10 -3 < K' < 6.10 -3 (kg/m), may be regarded as the

uncertainty we have in the value of ground level pressure on Mars, which_ by

present knowledge is _ lO _ PO < 20 (mb).
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2.5. General Feature of a Proposed Scheme for Sequential Estimation of

State and Parameters in Noisy Non-linear Systems.

An optimally controlled soft-landing maneuver in an imperfectly known

atmosphere presupposes an "optimal knowledge" of the current state of the

system. Generally we have to assume that

(a) there are unknown dynamic disturbances acting on the system (this is

due either to the approximate character of the differential equations

describing the actual behaviour of the system, or, to randomly acting

external forces);

(b) the dynamic parameters of the system are imperfectly known;

(c) in some cases not all state variables are available for measurement;

(d) the observable state variables are corrupted by measurement noise;

(e) we have no information on the statistics of the acting dynamic and

measurement noises.

Taking into account all these realistic assumptions we have to ask three

basic questions:

(a) how to obtain "optimal knowledge" (or "true estimate") on the current state

of the system;

(b) how a given scheme for sequential estimation does converge to the true

state of the system, or, using practical terms: how much time is necessary

to obtaining "true estimate" on the current state of the system.

(c) what are the practical implications of the given sequential estimation

scheme as far as its implementation is concerned, or, in other words:

whether it is possible to make reasonable simplifications on a (presumably)

complicated scheme.

Since soft-landing under atmospheric influence is described by (ordinary)

non-linear differential equations we are faced with the problem of non-linear

filtering (or sequential estimation). Earlier investigators in the theory of
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optimal filtering have mostly dealt with linear systems and have assumed

some (or complete) _uowledge on the statistics of the relevant disturbances.

Therefore their theories are inappropriate to handle the questions we are

posing in connection with "optimally controlled soft-landing in an imperfectly

known atmosphere".

Considerable results in the theory of sequential state estimation in

noisy non-linear systems have been obtained only recently! 2)(3) In the present

report we essentially follow the general framework of Ref. 3 which seems to be

adequate for handling our problem specified above.

In Ref. 3 a least-squares criterion is used for estimation purposes and

the sequential nature of the estimation problem is brought out by applying the

theory of invariant imbedding on the Euler-Lagrange equations which were for-

mally obtained by using Pontryagin's maximum principle. The derived sequential

estimator equations (which are ordinary differential equations) are approximations

to a non-linear partial differential equation resulting from the invariant

imbedding. (As a matter of fact this non-linear partial differential equation

can also be obtained by using the dynamic programming approach.)

If we are given a system by

x : f(x,t) + v(x,t) u (2.5.1)

y = h(x,t) + (Observation Error) (2.5.a)

where :

x = n-vector

f(x,t) = n-vector function

u = p-vector random dynamic input
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v(x, t) = n.p-vector function

h(x, t) = m-vector function

y(t) = m-vector output (= observation)

then, according to Ref. 3, an appropriate set of sequential estimator equations

are :

_ f(_,T) 2P(T)H(_,T)Q[y(T)-h(_,T)]dT (2.5.3)

where _:

d -- R_ 1
d--TP = f_(_,T) P(T) + P(T) _(x,T) + 2P(T)[H(_,T) Q[y(T)-h(_,T)]]_P(T) +

(_..5.4)

denotes the least-squares estimate of x;

=
8

the Jacobian matrix of f;

T^x : denotes the transpose of f_;

H =

J

the Jacobian matrix of h;

P = (Pij), n'n symmetric matrix;

Q = quasi-norm factor (we take Q = 1);

R = quasi-norm factor (n.n matrix);

T = running observation time;

[H(_,T) Q[y(T)-h(x, T)]]_ = n.n matrix with ith column:

[H(_, T) Q{y(T)-h(_, T) ] ]
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Since in our cases we always will assume for the observation vector that

Yi = xi + (state-independent Random Observation Error)

•'' m < ni = I,

Therefore, we always will have for Eq. (2.5.4) :

(2.5.6)

= f^P + _^ - 2PHQ_P+ R-I
X X (2.5.7)

where

H

i 0 ..... O\

o 1 o .... o !

• 0 • I

/

0 ..... 0 /

(2.5.8)

and

/i 0

0 1

• 0

HQH=

0

• • • •

• I

• /

/
• /

/
• /

/

• • • • • 0 /I

/

(2.5.9)

In the H and HQH matrices the number "m" of the diagonal elements

different from zero is equal to the dimensionality "m" of the observation

vector (2.5.6).
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Equations (2.5.3) and (2.5.7) are the basic filter-equations which we

will apply in the subsequent Sections for sequentially estimating states

(and parameters) in the atmospheric descent problems. As one can see

Eqs.(2.5.3) and (2.5.7) are ordinary, coupled, non-linear differential

equations. The observations y(T) appear as forcing terms in Eq.(2.5.3).

The matrix R -1 in Eq. (2.5.7) can also be regarded as a forcing term for

the P-equation (2.5.7) which can be named as a matrix gain equation.

In solving (or implementing)Eqs.(2.5.3) and (2.5.7) one can start with

assumed (= freely estimated) values for _ at

the proper starting values for the P-equations.

to select proper values for the (Rij I matrix.

T = O, but, one has to find

At the same time one also has

Due to the non-linear character

of the filter-equations (2.5.3) and (2.5.7) this question has to be investigated

for each problem. The main problem in solving the non-linear filter-equations

is, therefore, how to determine the appropriate Pij(O) and Rij values which

will assure that the estimated _(T)

on the dynamic description f(x,t)

the true values of x(T).

values, based on measurements y(T) and

of the system# will properly converge to

2.6. Sequential Estimation of State in Vertical Descent. (Assuming perfectly

known parameters.)

Considering a free fall trajectory (= no thrusting), and, making the same

assumptions on coordinate system, gas-dynamic forces, atmospheric density dis-

tribution as they were outlined in Sections 2.2 and 2.3, we obtain the

following differential equation governing the behaviour of the space vehicle.

oe • 2
x :K exp(- bx) x - g + u(t) ; K A K'

m
(_.6.1)

where x, x, x" = position, velocity and acceleration respectively;
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D

D

g = acceleration of gravity (considered as a constant on a limited

part of the trajectory);

m = mass of the space vehicle (constant, since we don't apply thrust

in this limited part of the trajectory);

u(t) = random dynamic disturbance;

K',K = parameters (constants), reflecting the gas dynamic characteristics

of the atmospheric flight;

b = parameter (constant), reflecting the physical characteristics of

the planetary atmosphere.

Let xI A x (altitude, measured as a positive distance from the landing-

ground upward)

A
x 2 = i (velocity, measured as a negative quantity downward to the

landing-gr ound )

Then Eq.(2.6.1) can be rewritten as

Xl = x2 (2.6.2)

x2 = Kexp(- bXl) x_ - g + u(t) (2.6.3)

which constitute the system equations of the problem considered in this section.

A. Given noisy position measurements only.

In this case we have a specified one-dimensional observation vector:

[position] = Yl(T) = Xl(T ) + (Observation Noise) (2.6.4)

D
This gives for the H and HQ_ matrices
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H

1 0

0 0 i o1o oJ
(2.6.5)

The Jacobian f^ becomes (from Eq.(2.6.2-3)):
X

/ o 1

f^ I
x 1

_, -Ebx22 exp(- b_l) 2Y_ 2 exp(- b_ I) i

(2.6.6)

and we have a P = 2 x 2 symmetric matrix. Thus the sequential estimator

Eqs.(2.5.3) and (2.5.7) for this problem become:

^ ^ (Yl- )Xl = x2 + 2Pll Xl (z.6.7)

x2^ = Kx2^2 exp(- bXl) - g + 2P12(Yl-_l) (2.6.8)

! (2.6.9)

PI2 = P22 - 2PIIPI2 + (2Pl2-PllbX2) Kx2exp(" bXl) + R12 (2.6.1o)

P22 :- 2p22 + 2(2P22-PI2bX2 ) " Kx2exp(-bXl) + R_2 (2.6.11)

where R! . are elements of the _(Rij)-i matrix.ij

B. Given noisy position and velocity measurements.

Since in this case we have a specified two-dimensional observation vector
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position

i --

velocity !

!

therefore the H

YI(T)

y2(T)

/ Xl(T) + (Observation Noise)_

x2(T ) + (Observation Noise)

and HQH matrices become

(2.6.12)

H= [i 0

io 1

m

HQH= lo!
0 1

!

(2.6.13)

The Jacobian f^x is the same as before, see Eq.(2.6.6), and, we have

a P = 2 x 2 symmetric matrix. Thus the sequential estimator equations

(2.5.3) and (2.5.7) for this problem become:

Xl = x2 + 2PII(Yl-Xl) + 2PI2(Y2"X2) (2.6.14)

^ ^2 exp(- ^ ^ ^
x 2 = Kx 2 bx l) - g + 2Pl2(Yl-Xl) + 2P22(Y2-X2) (2.6.15)

PII 2P12 2Pll 2 ,= _ _ 2P12 + Rll (2.6.16)

PI2 = P22 - 2PI2(PII + P22 ) + (2P12 - PllbX2 ) Kx 2 exp(- b_l) + Ri2 (2.6.17)

2

P22 = - 2(P12 + P22 ) + 2(2P22-PI2bX2) I£x2exp(- bx I) + R_,2 (2.6.18)

where RE. are elements of the (Rij) -I matrix in Eq.(2.5.7)ij

2.7. Sequential Estimation of State and One Parameter (either the atmospheric

density or the gasdynamic drag parameter) in Vertical Descent.

In this section we again consider a free fall trajectory. The basic

dynamic equation we will start with is the same as Eq.(2.6.1). But we take

one of the parameters in Eq.(2.6.1) -- either K or b -- as imperfectly

known.
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By defining the imperfectly known parameter(s) in the dynamic equation

as new state variable(s), --which amounts to augmenting the problem's state

space -- the imperfectly known parameter(s) can be modelled as solution(s)

to ordinary differential equation(s) with unknown initial condition(s).

This technique will allow us to handle all the sequential estimation problems

in the unified view of state space.

Taking "K" in Eq.(2.6.1) as imperfectly known, we define it as a third

state variable :

k o
x3 = K ; =

Thus the system equations become:

xI = x2 (2.7 .i)

x2 : x3 exp(- bXl) x_ - g + u(t) (2.7.2)

x3 = 0 (2.7.3)

Taking "b" in Eq.(2.6.1) as imperfectly known, we define it as a third

state variable :

o
x3 = b ; =

Thus the system equations bec_ne:

Xl : x2 (2.7.4)
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x2 = K exp(- x3xl) x_ - g + u(t) (a.7.5)

x 3 = 0 (2.7.6)

A. Given noisy position measurements only.

The observation vector is a specified one-dimensional one in this case

{position] : Yl(T) : Xl(T ) + (Observation Noise) (2.7.8)

which gives for the H and HQH matrices:

N

i 0 0 _ i 0 0

0 0 0 HQ_= i 0 0 0

0 0 0 0 0 0

In the case of x3 _ K, the Jacobian fX̂
!

/ 0 1
/

f^ i _^2^ ^ ^
= - ox2x 3 exp(- b_l) , 2x2x 3 exp(- bXl)

X i

0 0
\

and we have a P = 3 x 3 symmetric matrix.

becomes (from Eqs.(2.7.1-3)):

0

^2
, x 2 exp(- b_l)

0

For the sequential estimator

equations (2.5.3) ana (2.5.7) we then obtain:

(2.7.9)

(2.7 .i0)

^ ^ (Yl- )Xl = x2 + 2PII _i (2.7 .ll)

^ ^ b_l 2P12(Yl^x2 : x3 exp(- ) _2 _ g + .Xl) (2.7.12)

_3 = 2Pl3(Yl-_l) (2.7.13)

PII P12= - 2 i + 2P12 + Ell (2.7.14)
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Pl_ = - 2P_-zP12+ P22 -°x2x3 exp(-bxl) P_ + 2x2x3 exp(-bxl) PI2 +

^2 I

x2 exp(- bx l) PI3 + El2
(2.7.15)

PI3 = - 2PllP13 + P23 + R13
(2.7.16)

3
P22 :- 2P12- zox2x 3 exp(- bXl) PI2 + 4x2x3 exp(- bXl) P22 +

2X_ exp(-bXl) P23 + R22
(2.7._7)

^_^ ^

P23 = " 2P12PI3 - bx2x3 exp(- bl l) PI3 + 2x2x3 exp(- bXl) P23 +

^2

x 2 exp(- b_ l) P33 + R23
(2.7.18)

P33 = " 2P13 + R33
(2.7.19)

b, the Jacobian f^ becomes (from Eqs.(2.7.4-6)):
In the case of x3 x

/ 0 1 0 1

/ .^ ^2

^2^ _ _XlX 2 exp(.xlx3)

f^x : - Ki2x 3 exp(- x3x I) , 2_2K exp(- x3x I) ,

0 0 0
/

(2.7.20)

and since we have a P = 3 x 3 sy_uetric matrix, we obtain for the sequential

estimator equations (2.5.3) and (2.5.4):

Xl = _2 + 2Pll(Yl-Xl )
(2.7.21)

x 2 = K exp(- x3x I) x 2 - g + 2P12(Yl-Xl)^
(2.7.22)
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t

x3 = 2P13(Yl-Xl) (2.7.23)

Pll _ '= - 2P i + 2P12 + RII (z.7.z_)

^2^ exp(- ^ ^ Pll +PI2 = - 2PIIPI2 + P22 " FzX2x3 X3Xl)

2K_ 2 exp(- X3Xl) P12 - KXlX2 exp(- X3Xl) P13 + R12 (2.7.25)

913 = " 2P_P13 + 2P23 + R13 (2.7.26)

P22 _ 242 _..^2^ ^ ^ " ^ ^= - _mx2x 3 exp(- x3xl) P12 + 4Kx2 exp(- X3Xl) P22 "

.^ ^2 ^ ^ ,
aXlX 2 exp(- X3Xl) P23 + R22 (2.7.27)

? A2_. A ^

}23 = - 2P12P13 " _x2x3 exp(- X3Xl) P13

K_,,2 ,,^ ,
lX2 exp(- x3xl) P33 + R23

A

+ 2Kx 2 exp(- X3Xl) P23 -

(2.7.28)

2 !

}33 = - 2P13 + R33 (2.7.29)

B. Given noisy position and velocity measurements.

The observation vector is a specified two-dimensional one in this case

(see Eq.(2.6.12)), and that gives

H

i 0 0 '.

0 i 0 ]_

0 0 0 ;
/

HO_=

1 o o\

0 1 0

o o o/
i

_AK the Jacobian f^ is the same as Eq. (2.7.10), and,In the case of x3 x

since we have a P = 3 x 3 symmetric matrix, we obtain for the sequential

(2.7.30)

estimator equations:
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^fl = f2 + 2Pll(Yl-fi ) + 2P12(Y2-f2)
(2.7.31)

x2^ = x3x2^^2 exp(- bXl) - g + 2PI2(Yl-Xl) + 2P22(Y2-X2 )
(2.7.32)

x3 = 2P13 (Yl-Xl) + 2P23(Y2-x2 )
(2.7.33)

2 2
Pll = - 2Pll - 2P12 + 2P12 + Ril

(2.7.34)

9 A2A A

PI2 = - 2PIlPI2 " 2PI2P22 + P22 " °x2x3 exp(- bXl) Pli + 2x2x 3 exp(- b_l) PI2 +

^2 ^ , (2.7.35)
x2 exp(- bXl) PI3 + RI2

PI3 = - ZPllP13 - ZPI2P23 + P23 + Ri3
(2.7.36)

P22 = - 2P_2 -

A A

2 ^.^2^ + 4x2x 3 exp(- bl l) +2P22 - _ox2x 3 exp(- bXl) PI2 P22

2x22 exp(-bf i) P23 + R22
(2.7.37)

_2 A A

P23 = - 2PI2PI3 - 2P22P23 - Dx2x3 exp(- b_l) PI3 + 2x2x3 exp(- b_l) P23 +

^2 v

x2 exp(- bxI) P33 + R23
(2.7.38)

2p _3 _ 2p223+ R': -
(2.7.39)

b the Jacobian f^ is the same as Eq.(2.7.20).
In the case of x3 x

Since P = 3 x 3 symmetric matrix, the sequential estimator equations become:

^ ^ 2pll(y I ^i ) 2PI2(Y 2 ^2)xI = x2 + -x + -x
(5.7.4o)
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^^ (y ^ ^x2 = K exp(- X3Xl) x22 - g + 2PA2 -Xl) + 2P22(Y2-X2) (2.7.41)

^ = (Yz"z) + ^x3 2P13 _ 2223 (Y2"X2)
(2.7.42)

Pll 2 _ ,= - 2Pll - 2P 2 + 2P12 + Rll (2.7.43)

^2^ exp(- ^ ^ + 2K_ 2 exp(- ^ ^ -PI2 = - 2PIIPI2 - 2PIzP22 + P22 - KXgX3 X3Xl) PII X3Xl) PI2

kx ^2 ^ ^

Ix2 exp(-X3Xl) PI3 + Ri2 (2.7.44)

PI3 = - 2PllPl3 - 2PI2P23 + P23 + R13 (2.7.45)

P22 = - 2P_2 -
^2 ^ ^ ^ ^ ^

2P22 X3Xl) P12 X3Xl) P22- 2Kx2x 3 exp(- + 4K_ 2 exp(- -

^ ^2 ^ ^ I

2Kxlx 2 exp(- X3Xl) P23 + R22 (2.7.46)

^2^ exp(- ^ ^ + 2K_ 2 exp(- ^ ^ -P23 = - 2PI2PI3 - 2Pg2P23 - Kxgx3 x3xl) P13 X3Xl) P23

.^ ^2 exp(- ^ ^ + '
_XlX2 X3Xl) P33 R23 (2.7.47)

P33 = - 2p23 + 2P_3 + R_3 (2.7.48)

As one can see the only difference in the P equations for the specified

one- and two-dimensional observation vectors comes from the term 2PHQHP of

Eq. (g. 5.7). This means

in the case of

two dimens ional

obs. vector

: (2PHQ_P)
in the case of

one dimensional

obs. vector

+

2

PI2

./.

./.

PI2P22 P12P23 \

2

P22 P22P23

g

"/" P23 ,
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The difference in the x equations in the two cases is

d
i

dT

x 1

x 2

A

x3
in the case of

two dimensional

obs. vector

d
m

dT

^

xI

A

x2

^

x3
\

in the case of

one dimensional

obs. vector

+
P22

P23 '
\ /

(Y2"X2)

2.8. Sequential Estimation of State and Two Parameters in Vertical Descent.

The free fall trajectory is considered in this Section 3 too. This means

that the basic dynamic equation we will work with is the same as Eq.(2.6.1).

But we will regard both "_' and "b" parameters in Eq.(2.6.1) as imper-

fectly known parameters.

Using the same arguments as they were outlined in the first part of

Section 2.7, we augment the state space of the problem by defining

x3 =Ab , b=O

A _=0
x 4 = K" ,

Thus the system equations became:

xI = x 2 (2.8.i)

x2 = x4 exp(- X3Xl) x_ - g + u(t) (2.8.2)

x 3 = 0

_4 = o
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I
A. Given Noisy Position Measurements 0nly.

Since the observation vector is one-dLmensional (see Eq.(2.7.8)) we have

m

for the H and HQH matrices:

H

/1 0 0 0 /

0 0 0 0

0 0 0 0

0 0 0 O/

HQH=

\
1 0 0 O_

,

0 0 0 0

0 0 0 0

0 0 0 0

II

For the Jacobian f^ we obtain from Eqs.(2.8.1-4):
X

0
!

^2_ ^ ^ A

f_ = / - x2x3x 4 exp(-xlx 3)

0

'L

\ O

\

1 0

, 2x2x4exp(-xlx 3) , -XlX2X4exp[-xlx 3)

0 0

0 0

\

o \

^2 ^ ^

x2exp (XlX3)

0
/

/

0 /
/

(2.8.5)

Since P = 4 x 4 symmetric matrix, the sequential estimator equations

become:

^ ^ Plz(Yl̂l)xI = x2 + 2 -x (2.8.6)

A A

• ^2 -XlX;
x 2 = x4x2e - g + 2P12(Yl-X I) (_.8.7)

]_3 = 2P13 (Yl'_l) (2.8.8)

x4 = 2P14 (Yl'Xl) (2.8.9)

_11= - 2P_ + 2P12+ Rh (2.8.1o)
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PI2 ^2...... 2^
= - 2PIIP12 + P22 + (- PIIX2X3X4 + 2P12x2x4 - Pl3XlX2X4 +

e i ^ ^xpt-x x3)+ (2.8.11)

PI3 = - 2PIIPI3 + P23 + Ri3 (2.8.12)

Pi4 = - 2PIIPI4 + P24 + R14 (2.8.13)

2
P22 = - 2P12 + 2(- ^2...... 2^ ^2

Pl2x2x3x 4 + 2P22x2x 4 - P23XlX2X4 + P24x2)

^ ^ !

exp(- XlX3) + R22 (_.8.14)

^ ^ !

exp(-XlX3) + R23 (2.8.15)

^2...... 2^ ^2
2PI2PI4 + (- Pl4X2X3X 4 + 2P24x2x 4 - P34xix2x4 + P44x2 )

^ ^ !

exp(- XlX3) + R24 (2.8.16)

3 = - 2P 3 + R33 (_.8._7)

P34 = - 2PI3PI4 + R34 (2.8.i8)

2
(_ .8.19)

B. Given noisy position and velocity measurements.

The observation vector in this case is a specified two-dimensional one

(see Eq.(2.6.12))_ and that gives:



lll

i 0 0 0 /i 0 0 0 '

0 i 0 0 __ _ 0 i 0 0
HQH =

I

o o o o! io o o o

/0 0 0 0 \\ 0 0 0 0 "

The Jacobian f^ is the same as Eq.(2.8.5), and, P = 4 x 4 symmetricX

matrix.

The sequential estimator equations in this case would differ from those

(Eqs.(2.8.6-19)) derived for the case of the specified one-dimensional obser-

vation vector by the following terms:

il = _.q.(_.8.6)+ 2P12(Y2-12) (2.8.20)

x2 = Eq.(2.8.7) + 2P22(Y2-12) (2.8.21)

_3 = Eq.(2.8.8) + 2P23(Y2-12) (2.8._)

_4 = _q.(2.8.9)+ 2P24(y2-12) (?.8.23)

_im = _q.(2.8.1o) - 2P#2 (2.8.24)

P12 = _'q.(2.8._) - 2Pj_2P22 (2.8.25)

P13 : _'q.(_'8"12) - 2Pl_.P_.3 (2.8.26)

P14 = sq.(2.8.13) - 2P12P24 (2.8.27)

P22 = Eq.(2.8.14) - 2P_2 (2.8._8)
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P23 = Eq.(2.8.15) - 2P22P23

P24 = Eq.(2.8.16) - 2P22P24

P33 = Eq.(2.8.17) - 2p223

P34 = Eq.(2.8.18) - 2P23P24

P44 = Eq.(2.8.19) - 2P242

(2.8.29)

(2.8.30)

(2.8.31)

(2.8.32)

(2.8.33)

2.9. Sequential Estimation of State in Ballistic Descent (assumin 6 perfectly

known parameters ).

Considering the free ballistic trajectory (= no thrusting) and omitting

the differential equation describing the ground range "s" of the space vehicle

(Eq.(2.2.11)), and, defining

A

xI = h (altitude above surface)

A (path angle )
x2 =G

A (velocity)
X 3 : V

and using the same assumptions as we did in Section 2.2, we have the following

differential equations (see also Eqs.(2.2.10), (2.2.12), (2.2.13)) for esti-

mating the vehicle's state:

x I = - x 2 s in x 3

_2 = \_x2 cos x 3

(2.9.1)

(2.9.2)
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= + _(t)x3 g sin x3 - K exp(- bXl) x2 2
(2.9.3)

where K A K'= -- ; m = mass of the vehicle and K' is defined by Eq.(2.2.9)
m

u(t) = random dynamic noise

g,b,R = as defined in Section 2.2. (Acceleration of gravity, inverse scale

factor for atmospheric density, radius of the planet, respectively.)

A. Given Noise Position Measurements Only.

By "position" we mean in this case: altitude from the surface and path

angl__e. Hence the observation vector becomes:

laltitude / =path

angle

1 !! Yl(T) f xI(T ) + Observation Noise

\Y2(T)/, I x2(T)+,, Observation Noise/I/

This gives for the

1

H= 0

0

The Jacobian f^
X

H and HQ_ matrices

oo1
1 O!

J
o O/

i

, HQH=

1

0

0

becomes (from Eqs.(2.9.1-3)):

0

1

0

0 _

O ;

o/
(2.9.5)

/
/ o

f

f^x =i O

bKx22exp(- bx I)

- sin x3

_2 x3

- 2Kx2exp(- bx I)

\

- x 2 cos x3 \

/
/

g cos x3 /

(2.9.6)
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For this problem we have a P = 3 x 3 symmetric matrix. Thus the sequential

estimator Eqs.(2.5.3)_ (2.5.7) in this case become:

Xl = - x2 sin _3 + 2 Pll(Yl-_l) + 2P12(Y2._2)

• g x 2

X 2 = A

x 2 R
(Yl ^ 2P22 Y2"cos x3 + 2P12 -Xl) + ( x2 )

.... 2 2p13(Yl_Xl) + 2p23(Y2_x2)x3 = g sin x 3 - K exp(- bXl) x 2 + ^ ^

(2.9.7)

(2.9.8)

(2.9.9)

^ ^ l=- 2(Pll + P[2 ) - 2(P12 sin x3 + P13 cos x3)+ RII (2.9.lO)

P12 = - 2(PllP12 + P12P22 ) - P22 sin x3 - P23x2 cos x3 - P121_'_2

\x2

- P13 sin x 3 + R12

I2

+ • COS

(2.9.ll)

PI3 = - 2(PIIPI3 + PI2P23 ) - P23 sin x3 " P33x2 cos x 3 + PIIbK_ exp(- b_l)

- 2PI2K_ 2 exp(- bXl) + Pl3g cos x3 + R13 (2.9.12)

P22 sin +
=- 2(P 2 + P22 ) - 2P22 + cos - 2P23 R] x 3 R22,

\x2 2

' /g x2 !
= - - sin

P23 2(P12P13 + P22P23 ) 23_2 + cos _3 J ]_3
,,2 ,2 /

^2 ^ ^ ^ |

+ P12 bKx2 exp(- bXl) - 2P22Kx 2 exp(- b_l) + P23g cos x3 + R23

(2.9.13)

(2.9.14)

P33 = - 2(P 31 + P23)2 + 2PI3bK_ _ exp(- b_l) - 4P23Kx2exp(-^ b_l) + 2h3 cos x3^ + R33'

(2.9.15)

where R' are elements of the R -I.. matrix.
zj
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B. Given noisy position and velocity measurements.

In this case we have the following observation vector:

altitude I / yI(T)
l

path i i
angle = I Y2 (T)

Y3(T)_velocity _

Xl(T + Observation Noise

= i x2(T) + Observation Noise i

x3(T ) + Observation Noise /
/

(2.9.16)

which gives for the H and HQH matrices

H m-

l o ol

O i 0 i ,

0 0 i/

HQ = l°° 10 I 0

0 0 i/

(2.9.17)

The Jacobian f^ is the same as in Eq.(2.9.6), and, P = 3 x 3 symmetricx

matrix.

The sequential estimator equations in this case will be different from

those Eqs.(2.9.7-15)) derived for the case of the specified two-dimensional

observation vector by the following terms:

^ 7) ePl3(- 3)x I = Eq.(2.9. + Y3 (2.9.18)

_2 : Eq.(2.9.8) + 2P23(Y3-X3) (2.9.19)

x3 = Eq.(2.9.9) + 2P33(Y3-_3) (2.9.20)

PII = Eq.(2.9.10) - 2P]23 (2.9.21)

PIg = Eq. (2.9.11) - 2PI3P23 (z.9.22)
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PI3 = Eq. (2.9.12) - 2P13P33 (2.9.23)

2
P22 = Eq.(2.9.13) - 2P23 (2.9.24)

P23 = Eq.(2.9.14) - 2P23P33 (2.9.z5)

P33 = Eq.(2.9.15) - 2P33 (2.9.26)

2.10. Numerical Results in Sequential Estimation of State and Parameters in

Atmospheric Descent.

In order to be able to investigate the feasibility and convergence prop-

erties of the proposed non-linear filter equations discussed and derived in

the previous Sections (Sections 2.5-9) we have made some numerical experiments

(called "digital simulating") on the computer.

A. Digital simulating of the non-linear filter.

The dynamic noise (DN) and observation noise (ON) in the process of digital

simulating have been modelled according to the following expressions:

For DN: u1 = Cl_l(t) (2.10.1)

where

For ON: u2 : c2_2(t) (position measurement) (2.10.2)

u3 = c3_3(t ) (velocity measurement) (2.10.3)

_l(t), _2(t), _3(t) are_ for each "t", statistically independent random

variables, uniformly distributed between [+l, -1], and,

Cl, C2JC 3 are constants, adjusted to the relative magnitude of the

dynamic and observation noises, respectively.
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D

D

This type of noise-modelling is in complete accordance with the general

assumptions which were made in deriving the non-linear filter equations, and,

reflects the fact that we have no information on the statistics of the acting

dynamic and observation noises whatever.

Digital simulating of the non-linear filter (or sequential estimator)

equations contains the following phases:

(a) We generate the system trajectories (for the dynamically perturbed

systems, using Eq.(2.10.1) for the dynamic noise) by solving the

relevant system equations for given initial conditions.

(b) We generate the noisy observations .Yi(t), which means: we corrupt

the output data from Phase (a) with observation noise given by

 ,qs.(2.lO.2-3).

(c) We use the generated Yi(t) as input to the relevant sequential

estimator equations which then are solved for assumed initial values

for _. and P...
l 18

The procedure of digital simulating is schematically depicted on Fig. 2.10.1.

In the case of vertical descent the true system trajectories were generated

for the following parameter values and initial conditions:

KAK'=-- = 0.5 lO -5 [m-1]
m

b = 1.0 lO -5 [m-1]

g = 5.0 [m/sec 2]

x2(O) : 7.0 10 2 [m/sec]
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The selected _alues for "K" and "b" represent relatively thin atmospheric

conditions. (These parameter values give about 0.2g deceleration due to

the drag at the selected initial values on xI and x2. ) In the calculations

we have assumed, furthermore, that "K" is constant on a limited part of the

trajectory.

In generating noise we have assumed 4-8% dynamic noise, and, 0.5-1.O%

observation noise in position measurements, and, 1.O-2.0% observation noise

in velocity measurements. These %-s roughly give for the adjustable constants

ci in Eqs.(2.10.1-3):

CI = 0.12 - 0.24 [m/sec2]

c2 = 2oo.o - 4oo.o [m]

c3 = 6.0 - 12.0 [m/sec]

As one can see the maximum value of the dynamic noise (Cl) corresponds roughly

to 10-20% of the deceleration due to the assumed value of the drag force.

In solving the sequential estimator equations we used • 5-7% wrong

estimates for the initial values of the state variables, and, • 50% wrong

estimates for the "initial values" of the parameters. These values roughly

correspond to

0.93 lO5 _ Xl(O) m 1.07 105 [m]

6.5 10 2 _ x2(O) g 7.5 10 2 [m/sec]

0.25 10 -5 < I_(0) m 0.75 10 -5 [m-1]
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0.5 10 -5 _ _(0) g 1.5 10 -5 [m "l]

(The assumed wrong initial estimates for "K" and "b" in the dynamic

equations affect only the deceleration due to the drag. In view of

Eq.(2.7.2) this means that we have _2(O) = 0.2g - g ± O.lg ± O.O4g =

- O.8g • O.14g _ 20% uncertainty in the acceleration at t = O. And, at

the same time, we also have the 5-7_ uncertainties in the initial estimates

of the velocity and the position.)

In solving the gain equations (the "P" equations derived from Eq.(2.5.7)):

(a) we have put the off-diagonal elements of the R -1 matrix equal to

zero and just tried to select proper diagonal elements for R-l;

(b) we have always used zero as initial value for the off-diagonal

P-equations and tried to select proper initial values for the

diagonal P-equations only.

The "proper" R'. and Pii(O) values were selected by trial-and-errorii

technique.

R_. and
In selecting "proper" ii

fairly obvious simultaneous criteria:

Pii(O) values we have used the following

a good sequential estimation must

(a) converge fast to the true trajectory;

(b) have a stable (smooth) behaviour along the true trajectory;

(c) be insensitive for a given class of "wrong" initial estimates;

(d) such that (a)3 (b), (c) be met for all estimated variables.

The digital simulating was carried out on the IBM 7094 computer using

two CIT subroutines: NRAND for generating random numbers, and, DEQ (fixed

mode version) for integrating the differential equations. For integration step

we always used AT = O.O1 sec. The total integration ("estimation") time was

20 sec in each case.
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B. Discussion of results.

Regarding the "digital experiments" we have run we can make the followir_

general remarks.

(a) The gain equations (the "P" equations) settle down on some

asymptotic Pij (_) values in each case. This usually occurred

after lO-15 sec estimation time.

(b) The dominating factors in achieving "good estimates" in the above-

specified sense are the selected (constant) values of the R'. terms.

(In this connection it is interesting to note that by choosing

R "l -= 0 some estimated trajectories did nt converge to the true

trajectories at all, but they run parallel to them in a distance

determined by the wrong initial estimates.)

• ! !(c) Both the order of magnitude of the R! terms and the ratios R../R..

are important factors in achieving "good estimates".

(d) Since the Pii equations represent (second order) approximations

to the optimal value of the "cost functional", one has to select th____e

initial values for the P.. equations in the neighborhood of the
11

optimal solution. (Or equivalently: in the region of convergence.)

But variations in the Pii(O) values in the region of convergence do

not markably affect the "goodness" of the sequential estimation.

Some representative results of digital simulating we so far have obtained

are shown in Figs. 2.10.2-11. Among those Figures we especially call attention

to Figs. 2.10.8-8.a which display trajectory-characteristics markedly different

from those depicted in Figs. 2.10.2-7. Marked differences are manifested not

only in the transient part of the estimated trajectories but also in the

behaviour of the asymptotic part (in the smoothness) of the trajectories.

These marked differences have their source in reversing the order of magnitude

of the R!. terms. Observing that fact we used it as a guide in selecting
II

"proper" R' values in our calculationsii
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The best results we have obtained in estimating position and velocity

having only (noisy) position measurements are displayed in Figs. 2.10.2-2.a.

As we can see in these Figures after 3-4 sec estimation time (corresponding

to the transient part of the estimated trajectory) we have a "smooth estimate"

on position with an error amplitude corresponding to 1/lO-th of the measurement

noise (which is equivalent to 20-40 m in our numerical example), and, after

12-13 sec transient estimation time we have a "smooth estimate" on velocity

with error amplitude _ 4-5 m/sec. The results shown in the other Figures

(Figs. 2.10.3-7) display slower convergence to the true trajectorY , or3 they

are associated with higher error amplitudes and frequencies, or, they are more

sensitive to the chosen class of wrong initial estimates than those results

which are depicted in Figs. 2.10.2-2.a.

The best results we have obtained in estimating position and velocity

having both position and velocity measurements are shown in Figs. 2.10.9-9.a.

As one can see in these Figures after 1.5-2.0 sec transient estimation time

we have a "smooth estimate" on position with an error amplitude corresponding to

1/12-1/15-th of the measurement noise (which is equivalent to 10-30 m in our

example), and, after 4-5 sec transient estimation time we have a "smooth

estimate" on velocity with an error amplitude corresponding to 1/8-th of the

measurement noise (which is equivalent to 1-2 m/sec in our example). The se-

! •quential estimation results, by using those Ril values which were applied for

the 'best trajectories" depicted in Figs. 2.10.9-9.2, are very much insensitive

to the (wrong) initial estimates on the state variables as it is clearly demon-

strated by Figs. 2.10.10-lO.a. On the other hand, Figs. 2.10.11-11.a clearly

show the importance of the order of magnitude of the R!. terms and theirii

ratio in obtaining good sequential estimates on the state variables.
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2.11. New2 'Asymptotic Non-linear Filter Equations.

It turns out, as we have pointed out in the previous Section, that the

Gain Equations of the proposed Non-linear Filter settle down on some asymptotic

Pij(_) values in each case of our estimation problem. This very fact suggests

the idea of simplifying the sequential Estimator Equations which were derived

in Sections 2.6-9 b__ysimply omitting the Gain Equations (the Pij equations)

from the filter equations and using only the State Estimator Equations (the

equations) with the precomputed 2 proper asymptotic values of Pij" The new,

Asymptotic Non-linear Filter Equation, which we propose here, has the following

general form:

dT
2.11.I

where the symbols have the same meaning as it was explained in Section 2.5,

and, P(_): precomputed, proper asymptotic values of the gain matrix P.

We run some digital experiments by using Eq.(2.11.1) and obtained sur-

prisingly good results. (In the subsequent computations we have used the same

numerical values for constants, for initial values, for generating noise, etc.

as we did in Section 2.10.)

In the case of estimating position and velocity having only position measure-

ments we have, according to Eq.(2.11.1), the following simplified non-linear

filter equations (obtained by omitting Eqs.(2.6.9-11) and using only Eqs.

(2.6.7-8) with proper Pij(_) values):

^ ^ 2PII( ) (Yl ^i)X1 = X 2 + _ -X

x2 = K_ exp(- bx I) - g + 2P12(_) (Yl-Xl)

(2.ii.2)

(2.11.3)
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D
where we have applied the following asymptotic gain values:

PII (_) = 0.849

PIZ(_) = 0.221

(2.ll.4)

These gain values were obtained by the computations which provided the "best

results" depicted in Figs. 2.10.2-2.a. (The symbols in Eqs.(2.11.2-3) have

the same meaning as in Section 2.6.)

The results obtained by the proposed, new_ Asymptotic Non-linear Filter

Equations (2.11.2-4) are displayed in Figs. 2.11.1-1.a. Comparing these

Figures with Figs. 2.10.2-2.a we observe that the simplifications used in the

Non-linear Filter Equations only affect the transient part of the estimated

D
trajectories; keeping the "good properties" of the filter unchanged.

(Relative insensitivity to wrong initial estimates on the state variables,

accurate reproduction of all state variables, stable, smooth behaviour around

the true trajectories.)

In the case of estimating positon and velocity having both position and

velocity measurements , we can, according to Eq. (2.11.1)_ use the following simpli-

fied non-linear filter equations (obtained by omitting Eqs. (2.6.16-18)) from

the Sequential Estimator Equations and using only Eqs.(2.6.14-15) with proper

Pij (=) values) :

^ ^ 2PII()(Yl^i) )(Y2^2)x I = x 2 + _ -x + _ -x (2.11.5)

x2 : Kx2exp(- bx l) - g + 2Pl2(°°)(Yl-Xl) + 2P22(°J(Y2-X2 ) (2.11.6)

where we have applied the following asymptotic gain values:
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Pll( ) : 2.255

PI2 (=) : 0.095

P22(=) = o.532

(2.11.7)

These gain values were obtained by the computations which provided the "best

results" depicted in Figs. 2.10.9-9.a. (The symbols in Eqs.(2.11.5-6) have

the same meaning as in Section 2.6.)

The results obtained by the proposed 3 new Asymptotic non-linear Filter

Equations (2.11.5-7) are shown in Figs. 2.11.2-2.a. Comparing these figures

with Figs. 2.10.9-9.a we see again that the simplifications introduced into the

Non-linear Filter Equations 3 resulting the new, Asymptotic Non-linear Filter

Equations 3 affect only the transient part of the estimated trajectories 3

keeping the "good properties" of the filter unaltered.

In order to investigate how variations in the Pij(_) values influence

the estimated trajectories belonging to the new 3 Asymptotic Non-linear Filter

Equations we made several "digital experiments" applying different Pij(__

values which were previously obtained for different Pij(O)__ and R!.11 values.

Figures 2.11.3-3.a display some of the estimated trajectories obtained by

using different Pij(_) values. (The values Pll (_) = 1.0323 P12 (_) = 0.0693

P22(=) = 0.167 used in obtaining Trajectory No. 1 in Figs. 2.11.3-3.a come

! !

from computations with Pll(O) = 2.03 P22(0) = 0.23 Rll = 2.03 R22 = 0.2).

Comparing Trajectories No. 1 in Figs. 2.11.3-3.a with the estimated trajectories

in Figs. 2.11.2-2.a we see that altering the Pij(_) values affects significantly

only the transient part of the estimated trajectories; other properties of the

estimated trajectories are insignificantly changed. Note in this connection that

the order of magnitude of the Pij(_) values used in obtaining Trajectories

No. 1 in Figs. 2.11.3-3.a are the same as the order of magnitude of the corres-

ponding Pij(_)__ values which were used in obtaining the estimated trajectories
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depicted in Figs. 2.11.2-2.a. In Figs. 2.11.3-3.a we also show the

estimated trajectories (labelled with No. 2) obtained by using Pll(_) =

P12 (_) = P22 (_) = 1.0 as "guessed" values instead of applying some precomputed

Pij(_) values. It is interesting to observe in what extents the properties of

the estimated trajectories are changed in this case when the order of magnitude

of Pij (_) corresponds only partially to the order of magnitude of the

precomputed Pij (_) values.

We have also ran some "digital experiments" for estimating position;

velocity and one parameter (K) having position and velocity measurements; by

using the proposed; new t Asymptotic Non-linear Filter Equations. In this case,

according to Eq. (2.11.1), we have the following simplified non-linear filter

equations (obtained by omitting Eqs. (2.7.34-39) from the Sequential Estimator

Equations and using only Eqs.(2.7.31-33) with proper Pij(_) values):

^ ^ (Yl-i) + (Ye-Xe)xI = x2 + 2PII (°_) x 2P12(°_) ^ (e.ll.8)

A ^ _ 1 A A A

x 2 = x3x2exp _- bx I) - g + 2Pl2(_)(Yl-X I) + 2P22(_)(Y2-X2)

x3 = 2P13 (_)(yl-_l) + 2P23 (_)(y2-_2)

(2..]-l.9)

(P.II.IO)

The symbols in these equations have the same meaning as in Section 2.7.

Instead of applying precomputed values for Pij(_) in Eqs. (2.11.8-10)

we now tried to use "proper Pij(_) '' determined by order of magnitude analysis

(the justification of which was demonstrated previously in the present Section).

We have found
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Pli( ): io

PI2(_) = .10-2

PI3 (o_) = i0 -6

P22( ): i

P23 (=) = 10 .5

(2.il.ll)

as "proper Pij (_) values".

The results obtained by Eqs.(2.11.8-11) which we termed as "tentative

Simplified Filter" because of the way the Pij(_) values were determined, are

displayed in Fig. 2.11.4. After 2-3 sec transient estimation time, as one can

see in that Figure, we have a "smooth estimate" on position with an error ampli-

tude corresponding to _ 1/lO-th of the measurement noise (which is equivalent

to 40 m in our example), and, after 5-6 sec transient estimation time we have a

"smooth estimate" on velocity with an error amplitude corresponding to 1/5-1/6-th

of the measurement noise (which is equivalent to 2-3 m/sec in our example.)

The "parameter trajectory" converges asymptotically to the true (constant) value,

and, after 18-20 sec transient estimation time the estimated value of the param-

eter (K) differs from the true value only with 8-10%.

In order to demonstrate the feasibility of the proposed, new, Asymptotic

Non-linear Filter more profoundly we have performed two interesting digital

experiments": (1) by altering the dynamic state of the system (going from

acceleration over to deceleration); (2) by having systematic error in the

value of the gas dynamic parameter K'.

(1) Suppose we were wrong by a factor lO in the value of K' when we

precalculated the asymptotic value P(_) of the gain matrix. In the present

example this means that the true trajectories are given by applying
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K' = 5.10 -5 (kg/m) and not by using K' = 5.10 -6 (kg/m) as we did when we

precalculated P(_). But, in estimating the true state of the system by

means of Eqs.(2.11.5-6), we still use that P(_) value which was obtained by

applying K' = 5.10 -6 (kg/m) in the dynamic equations of the system.

The results we obtained in this "digital simulating" are displayed in

Figs. 2.11.5-5.a. As one can see in these figures the dynamic state of the

system is essentially different from the previous state when we applied

K' = 5.10 -6 (kg/m). Previously the accelerating force was greater than the

decelerating force resulting increasing velocity, (see Fig. 2.11.2.). But now

the decelerating force is greate r than the accelerating force resulting decreasing

velocity. Despite this difference in the dynamic state of the system the

Asymptotic Filter, with P(_) values obtained for the state of increasing

velocity, does reproduce and estimate the system trajectories also in the state

of decreasing velocity in the desired fashion. The "good properties" of the

filter are not changed, and, the error amplitude of the estimated trajectories

is the same as it was previously.

(2) Suppose we believe that the parameter K' has the value K' = 5.10 -5

(kg/m). By applying this value for K' in the original Sequential Estimator

Equations (2.6.14-18) we obtained

Pll = 2.255

(2.11.12)

But let us assume that the true trajectories and the measurements based upon

them, feeding them into the Asymptotic Filter Equations where we apply values of
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Pii(_) shown in Eq. (2.11.12), are given by using K' = 6.10 -5 (kg/m). This

means we have 20_0 systematic difference between the value of K' applied in

the Asymptotic Filter Equations and the value of K' applied in generating

true trajectories and measurements.

The results we obtained in this "digital simulating" are depicted in

Figs. 2.11.6-6.a. Trajectories labelled with No. 1 in these figures belong to

the original (unabbreviated) Sequential Estimator Equations, and, those

labelled with No. 2 belong to the simplified, Asymptotic Filter Equations. As

one can see in these Figures the basic "good properties" of the Asymptotic

Filter are unaltered. The Asymptotic Filter does reproduce and estimate the

true trajectories in the desired fashion, despite the 2_ systematic error in

the applied value of parameter K'.

The results we so far have obtained using the new, Asymptotic Non-linear

Filter Equations are very promising, indeed. Thinking in terms of implementation

of the Non-linear Filter Equations, it is hard to overemphasize the practical

implications of the proposed, new, Asymptotic Non-linear Filter Equations.

2.12. Summary and Future Work.

Defining fuel consumption as a natural performance index (and not considering

atmospheric heating effects as constraining factors), assuming, furthermore,

known atmospheric data and a specified thrust engine we have shown how to

obtain Optimal Thrust Programs for soft landing on an atmospheric planet.

Optimal Thrust Programs are obtained by applying the Pontryagin Maximum Principle

and are presented in form of Switching Functions. Calculation of Optimal Thrust

Programs can be used as a guide in specifying fuel requirements for a given

mission. Since the Pontryagin Maximum Principle provides an open-loop control

the dependence of the Switching Functions on given planetary atmospheric data

was emphasized and demonstrated.
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The space vehicle encounts changing dynamic environments during the

course of atmospheric entry and landing maneuver. This is essentially due

to the change of atmospheric density from a dynamically insignificant value

at high (orbital) altitudes to a dynamically dominating factor at low altitudes.

Because of our very limited and hardly improvable knowledge on planetary atmo-

spheric conditions any control program for any landing mission to atmospheric

planets must exhibit adaptive features. By "adaptive features" we mean such

elements in the control program which are designed

(i) to estimate the current state of the space vehicle in the presence of

(external) dynamic and measurement noise and by starting with assumed

(presumably wrong) atmospheric parameter values, and,

(2) to improve (or confirm) the assumed atmospheric parameter values during

a limited phase (or limited phases) of the atmospheric flight

in order to be able to make the proper decisions in the control program to

arriving the prescribed terminal state in an "optimal" way.

The main part of the present study was devoted to investigate the feasibility

of a proposed Non-linear Filter_ formulated as a system of coupledj ordinary

non-linear differential equations with unknown initial conditions_ for se_uentially

estimating state and parameters during a limited part of atmospheric flight.

Several interesting properties of the Non-linear Filter_ as applied to the

present problem_ are _pointed out.

The main_ new results of this investigation consist of demonstrating the

possibility of simplifying the Non-linear Filter to a considerable extent as

far as the involved mathematical operations are concerned. The introduced simpli-

fications can be properly formulated in terms of an "Asymptotic Non-linear Filter"

which exhibits the same merits as the original s complete filter does in the

present problem. By "asymptotic" we mean the possibility of precomputing the
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settled-down values of the gain matrix, and, then using these values as constants

in the State Estimator Equations from the initiation of sequential estimation in

real time. In practical terms this means that, given an "n"-dimensional state

vector, the Asymptotic Filter necessitates the solution (or implementation) of

"n" coupled, ordinary, non-linear differential equations, while the original,

n

complete filter necessitates the solution (or implementation of N = n + _ i
i=l

coupled, ordinary, non-linear differential equations.

Besides additional computations for feasibility studies on the Non-linear

Filter applied to the soft-lander problem, the future work will be concentrated

on (i) existence problems related to the Non-linear Filter; (2) stability of

the Asymptotic Non-linear Filter; (3) control based on estimated state, and,

(4) reconsiderations of some fundamental aspects of the non-linear filtering

problem.
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APPENDIX A

APPROXIMATING THE VECTOR_ SEQUENTIAL 2 NONLINEAR_ LEAST
SQUARES FILTER FOR EASE OF IMPLEMENTATION

Nonlinear Filter

Introduction

Consider the system,

x : g(t,x) + k(t,x)u (A.I)

y(t) : h(t,x) + (unknowables) (A.2)

where, x: n x i state vector

g(t,x): n x 1 vector function

k(t,x): n x p matrix function

u: p x 1 unknown input

h(t,x): m x 1 vector function

y: m x 1 observation

No statistical assumptions are made concerning the observation error or the

unknown input. Defining the vector residual errors,

where

el(t ) : y(t) - h(t,_) (A.3)

e2(t ) = _ - g(t,_) (A.4)

_(t), 0 _ t _ T denotes a nominal trajectory, and criterion function,

T

j [llel(t)llQ + lle2(t)ll2] dt

0

(A.5)
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P
then the estimation problem is to minimize (A.5) with respect to _(t),

0 g t _ T given the observations y(t), 0 _ t _ T. If _(t) is the

minimizing function then x(T) is the best least-squares estimate of x(T).

The above is equivalent to minimizing_ with respect to _(t) and _(t)

0 _ t _ T, the expression,

T

j_ [lly-h(t,x)llQ+_ ll_ll2k_k]

0

(A.6)

subject to the differential constraint,

x = g(t,x) + k(t,x) (A.7)

D

with, x(O) and x(T) free, and T fixed.

By application of optimal control theory the above problem is seen to be

equivalent to the two-point boundary value problem 3

"* _H (t,x*, k)
x - _k

(A.8)

_H (t, *x, _) ; _(o) o ,= ---_ = _(T)= 0
_x

(A.9)

where,

H*(t,x*,;_) = Ily(t)-h(t,x*)//Q + (k,g(t,x*)) - _ <k, kv-lkT;_) (A.lO)

V(t,x*) = kT(t,x *) W(t,x*) k(t,x*) (A.11)

D
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This problem is now converted to a sequential estimator problem by

regarding T as a variable and replacing k(T) = 0 by X(T) = c where

- _ < c < _# with T and c independent variables. If we define the

missing terminal condition on x by r(c,T), then r(c,T) satisfies the

partial differential equation resulting from the invariant imbedding

procedure,

8r _r 8H (T,r, c) 8H (T,r, c)_-_- _-- - _c (A. 12)

A solution to this equation is sought of the form,

r(c,T) = x(T) + P(T) c (A.13)

where P(T) is an n x n matrix and c is an n-vector. Substituting this

equation in (A.12), expanding about r(0, T), and retaining terms to first

order in c yields the equations of the nonlinear filter,

d-_ = g(%x) + P(T) H(T,x) Q[y(T)-h(T,_)] (A.14)

dTdP= [_ (T,_P+ P_ (T, xlT + P[HQ[y(T)-h(T,_)]}^ Px

^ T ^
+ k(_,_) v-l(T,_)k (T,_) (A.ZS)

where,

T

L_j_;

.___nO.[.v_T)-ntT, x)]_ is an n x n matrix with
^

X

.th
l-- column

[HQ[y(T)-h(T,_)]}
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Dis cus sion

In general for a system of dimension n, a mechanization of the nonlinear

filter requires the solution of n + n 2 first order_ nonlinear, ordinary

differential equations. If an adaptive control design is sought then control

is based on estimated state_ i.e. the estimated state is viewed as the true

state and the control problem is solved deterministically. In this way the

estimation and control problems are uncoupled but the requirement remains that

the estimation problem be solved on-line in real-time. In this situation

either hardware and/or the economic consequences of computer requirements

could make the realization of the full nonlinear filter (equations (A.14)

and (A.15)) impractical. Hence economic or computer capability limitations

force us to seek approximations to equations (A.14) and (A.15) in practical

applications.

In the sequel we will present some results obtained for a specific system

which illustrate a successful approach to the approximation problem.

Experimental Results

Introduction.

Let the plant and observations be described by_

•" ax 3x + 3x+ 2x+ = 5 sint+_i(t) (A.16)

y(t) = x(t) + _(t)

We wish to estimate x(t), _(t), and the constant parameter a,

Adjoining the parameter to the original state equations yields_

(A.17)

sequentially.
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Xl = x2

x2 = - 2xi- aXlJ " 3x2 +

i=0

5 sin t + _l(t) (A.18)

Note that a statistical approach would require a knowledge of the mean and

covariance of the noise terms, _l(t) and _2(t). Although this requirement

is removed in the present approach 3 relative weightings for residual errors

must still be established and these are obtained intuitively. Hence in

Eq. (A.5) we will use Q(t) = 1 and W(t) = I. The noise terms will be

generated as follows: _l(t) uniformly distributed in [- 0.5, 0.5] and

_(t) = 0.i _(t) + O.llXl(t)l k2(t ) (A.19)

with kI and k2 uniformly distributed in [- 0.5_ 0.5]. Note that _2(t)

as generated depends on the state. In theory_ a statistical approach dictates

that _2(t) be independent of the state. In practice this is ignored since it

doesn't seem to make an appreciable difference.

The nonlinear filter for this problem consists of the three-dimensional

augmented state equations and the nine P equations_ six of which are independ-

ent since the P matrix is symmetric. Nine initial conditions must be estab-

lished before the (A.14) and (A.15) system can be integrated. If (A.6) is

defined as the "return function" J(c,T)_ and "dynamic programming" is used

to derive the Hamilton-Jacobi equation for J(c 3T), it can be shown that the

following relation exists,

P(T) = 2[Jcc(m, )] -I (A.20)
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Nearthe minimumof the surface being searched we would expect Jcc to be a

maximum_ud the diagonal ter_s of P to be a minimum. This fact allows a

meansto evaluate the "tracking" performance of the filter. For the computer

simulations under discussion the estimated state is comparedwith the true

state which was generated beforehand to evaluate tracking performance. In

actual practice of course we don't know the true state_ but we can evaluate

tracking by observing the time evolution of the diagonal elements of the P

matrix.

Equations (A.18) will be solved with initial conditions Xl(0 ) = x2(0 ) = i_

a(0) = 0.5 to generate the true trajectories. For this system (A.14) and

(A.15) (the carets on the states have been omitted for convenience) become,

Xl = x2 + Pll(Y-Xl )

_2 : - 2Xl - x3x_ - 3x2 + 5 sin t + pl_(Y-Xl)

_3 : Pl3(Y-Xl)

2
Pll = - Pll + 2P12 + 1

PI2 =-(2 + 3X3Xl 2) Pll" 3P12 - xfPl3 + P22 - PlIPI2

Pl3 = - PlIPl3 + P23

. 2 i
P22 = - 6P22 " (4 + 6X3Xl 2) Pl2 2x13P23 - Pl2 +

P23 = " 3P23 " (2 + 3X3Xl 2) PI3 - xlBP33 - Pl2Pl3

2

P33 = - Pl3 + i

(A. 21)

where the full system has been simplified by the relations PI2 = P21 _
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A
PI3 = P3I' P23 = P32' x3 = a, and,

y(t) = xl(t ) + O.I kl(t ) + O.llxl(t) l k2(t ) (A. 22)

where the xl(t ) appearing in (A.22) is that obtained by integrating system

(A.18) with initial conditions,

_i(o): o

_2(o)= o (A.23)

x3(O) = 0.5

In the sequel the system (A.21) will be referred to as the "full" filter.

D Initial Conditions.

The first thing to be determined is how the tracking performance of the

^

full filter depends upon the assumed initial conditions x(O) and P(O).

From Eq.(A.20) and the subsequent discussion we realize that if,

_(o) : mo (A.24)

then,

P(O) = 2[Jcc(O, mo)]-i = PO (A.25)

D

However, lacking any a priori information on x(O) it is reasonable to choose

_(0) = O. Similarly, lacking an analytic expression for J(c,T), P(O) must

be chosen intuitively. As a first guess we chose,
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3 1 11
P(O) = i 3 i (A.26)

i i 3

For the computations an integration interval size of .01 and total integration

time of i0 were used.

The results for the full filter with the above choice of initial condi-

tions are presented in Figures 1.1 through 1.4. It can be seen that x(t)

is tracking in approximately 4.5 seconds, x(t) in about 3 seconds, and the

parameter a still has a small offset at the end of lO seconds. The diagonal

terms of the P matrix are shown in Figure 1.4.

A close inspection of Eqs.(A.21) and the "steady-state" oscillations of

the diagonal terms of the P matrix indicates that tracking speed may be

__mproved by making P33 > P22

_(0) = 0 as before and,

[ ]i i i

P(O) = 1 i0 l (A.27)

i i 20

The results are shown in Figures 2.1 through 2.4. Now x(t) tracks in

approximately 3 seconds, x(t) in 2.5 seconds, and the parameter a in 4

seconds. The operation of the full filter has been markedly enhanced by a more

judicious choice of P(O).

An examination Of the behavior of the diagonal elements of the P matrix

(Fig. 2.4) suggests another variation. These terms settle down to some steady

na_siuusoidal oscillation about some average value after the filter is tracking.

Another case was run with the diagonal elements of P(0) set to these average

values in order to determine if performance could be thereby improved. Accord-

inglywe set

i.3 i 1 1
P(O) = l 3.2 z

l l 4.5
L J

(A.28)
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The results are shown in Figures 3.1 through 3.4. It can be seen that the

tracking performance of the filter has not been noticeably affected by using

initial conditions (A.28) in place of (A.27).

Filter Approximations.

Examination of the off-diagonal elements of P(t) in the previous case

reveals that these terms all oscillate about a zero average value. This

suggests a possible approximate filter with the diagonal elements fixed at

their initial values, viz. (A.28) and all of the filter dynamics supplies by

the off-diagonal elements of P(t). Setting Pll = P22 = P33 = 0 results in

the approximate filter,

with,

E 1 = x 2 + Pll(Y-Xl)

x2 = - 2Xl - X3Xl 3 - 3x2 + 5 sin t + Pl2(Y-Xl)

x3 = PI3 (y-xl)

PI2 = - (2 + 3XBXl 2) Pll - 3P12 - xl3pl 3 + P22 - PlIPI2

PI3 = - PlIPl3 + P23

P23 = - 3P23 - (2 + 3X3Xl 2) PI3 - x13P33 - Pl2Pl3

pll(t) = Pll(O)

p22(t): p2 (o)

P33(t)= P33(o)

(A.29)

to be solved with the initial conditions,
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x(o) : o

P(o) =I!3i l]3.2 i

i 4.5

Figures 4.1 through 4.4 display the results for this case. A comparison with

Figures 3.1 through 3.4 shows that the approximate filter, (A.29) works as

well in all respects as the full filter, (A.21). An examination of the off-

diagonal elements (not presented in this report) reveals different behavior

between the two cases, as would be expected.

Another approximation is suggested by the fact that Pl2(t) oscillates

about an average value of - 0.5 over a smaller range than either Pl3(t)

or p23(t). Accordingly, we set Pl2 : 0 and set pl2(t) : Pl2(O) for the

next approximation,

(A.30)

(A.31)

Xl = x2 + PlI(Y-Xl )

x2 = - 2Xl - X3Xl 3 - 3x2 + 5 sin t + Pl2(Y-Xl)

_3 = Pl3(y-Xl)

PI3 = - PllPI3 + P23

P23 : - 3P23 - (2 + 3x3xl 2) PI3 - x13P33 - P]2PI3

(A.32)

with, Pll(t): Pll(O)

Pl2(t): Pl2(O)

p22(t): P22(0)

P33(t): P33(0)
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to be solved with the initial conditions,

x(o) = o (A.33)

P(O) =

l l.3 -o.5 1 1

-0.5 3.2 i

l i 4.5

The results for this case are presented in Figures 5.1 through 5.3. A close

comparison with Figures 4.1 through 4.3 reveals that this more approximate

filter works even better (eg. x(t) and a are tracking sooner) than the

previous approximation_

The next approximation made consists of two steps. First, from the

previous computation a value of .077 for Pl3(O) is suggested. Second_ an

attempt will be made to eliminate one of the remaining differential equations

by replacing it with an algebraic equation. Accordingly the next approximate

filter becomes,

(A.34)

Xl = x2 + Pll(Y-Xl )

x2 : - 2Xl - X3Xl 3 - 3x2

: PlB(y-xl)

P23 = - 3P23 - (2 + 3xsXl 2) PI3

Pl3 : P23/P_

+ 5 sin t + Pl2(Y-Xl)

- x13P33 - PI2PI3

(A.35)

to be solved with the initial conditions,

x(O) = 0 (A.36)
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1.3 - .05 .077 1

P(O) = .05 3.2 i (A.37)

•077 i 4.5

The results are presented in Figures 6.1 through 6.3. For comparison purposes

the full filter (A.21) was used with initial conditions (A.36) and (A.37).

These results are presented in Figures 7.1 through 7.3. It can be seen that

the approximate filter (A.35) tracks even better than the full filter in this

case_

The final approximation results from eliminating the remaining P matrix

differential equation. In this case both Pl3 and P23 are computed from

algebraic equations. The resulting equations will be called the "algebraic"

filter_ viz._

xI = x2 + Pll(Y-Xl)

x2 = - 2Xl - X3Xl 3 - 3x2 + 5 sin t + Pl2(Y-Xl)

x3 = PI3(Y-Xl) (A.38)

- (x13P33)

Pl3 = 2
(2 + 3x3x I + PI2 + 3Pil)

P23 = PllPl3

A solution of the algebraic filter equations with initial conditions,

: o (A.37)

P(O):
I li3 - .05

- o5 3.2

0 o]0

4.5

(A.40)
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is presented in Figures 8.1 through 8.3. These sho_Lld be compared with the

operation of the full filter (A.21), with the same initial conditions, pre-

sented in Figures 9.1 through 9.3. It can be seen that the performance of

the algebraic filter is superior to that of the full filter in this case'

In an attempt to ascertain whether the operation of the algebraic filter

is input dependent the driving function to the system was changed. That is,

Eq. (A.16) was replaced by,

•"x + 3x+ 2x+ :f(t)+ t) (A.41)

where,

5(i - e-t/5) , t _ !0f(t) = -2) e-t/lO
5(i - e , t >i0

The operation of the algebraic filter with 5 sin t in (A.38) replaced by

(A.42) and initial conditions (A.39) and (A.40) is presented in Figures i0.i

through 10.3. For comparison purposes the full filter was used under the same

conditions and those results are presented in Figures li.l through 11.3. It

can be seen that the performance of the full filter and approximate filter is

e ssentially identical.'

(A.42)

Conclusions.

Although we have considered a specific example it is felt that the approach

presented is one which will work for any problem for which the solution has been

demonstrated to converge. Experiments with P(0) can be done to accelerate

convergence, and then approximations to the filter equations can be undertaken

in the systematic manner which we have illustrated.

It is evident from an examination of (A.21) and (A.38) that the latter form

of the filter places much less stringent demands on real-time computation
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facilities and, as we have seen above, results in no deterioration of perform-

ance. In any specific estimation and control application with hardware, space,

and economic constraints, our ability to derive feasible approximations to the

filter equations such as (A.38) maybe the factor which determines the overall

quality of the solution to the control problem.
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CHAPTER 3

MINIMUM-ENERGY CONTROL OF ELECTRIC PROPUISION VEHICLES

P

D

3. i. Introduction.

This chapter presents the analytical results obtained in the determina-

tion of the minimum-energy controller for a class of electric propulsion

vehicles. The purpose of the controller is the accomplishment of various

control actions for the vehicle while minimizing the net energy flow from a

rechargeable battery. The control voltage is applied to the armature circuit

of a d-c motor with fixed but reversible field excitation which produces the

propulsive force.

The complete mathematical description of the plant is obtained by using

Lagrange's energy methods from classical mechanics and making the following

assumptions :

1. The motion of the vehicle takes place on a terrain whose profile can

be approximated by straight lines, each of which is inclined at a particular

constant slope angle with respect to the horizontal direction.

2. The disturbance torque which appears in the plant equation remains

constant during the transient phase of the control. This is a reasonable

assumption if the time interval during the transient phase is much smaller

than the shortest time taken for the vehicle to pass over a portion of the

terrain with constant slope.

3. The air resistance and viscous friction in the system are proportional

to the speed of the vehicle. This is correct as long as the speed remains be-

low a certain threshold value.

4. The speed of the vehicle is proportional to the speed of the electric

drive motor.

5. The effective system moment of inertia is constant.
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6. The motor armature inductance is negligible. This assumption is

satisfactory for small motors but is inaccurate for large machines.

7. The motor operation is unsaturated which means that the armature

flux is proportional to the armature current.

The plant equation is

fe kt_x(t) = - _e + "-----Jera

1 kt
x(t) - .-- v(t) + .---- u(t)

Je Jera

where x(t), x(t) = Angular speed and angular acceleration of the

motor

u(t) = Armature control voltage

v(t) = Disturbance torque

Je _fe = Effective inertia and damping coefficients

respectively

r = Armature resistance
a

kt_ _ = Motor torque and back emf constants respectively

(3.l)

The performance index to be minimized for this problem is selected to be

E(u): u2(t)- T-
O a

(see Appendix for the derivation of Eq.(3.1) and Eq.(3.2)).

The integrand of Eq.(3.2) represents the electrical power which can flow

from the battery into the motor circuit or from the motor circuit into the

battery over some intervals of time during the controlling process. Therefore

energy transfer takes place into and from the battery. In the transient phase

of the control process, 0 g t % T, the nature of electrical energy transfer

may be best understood in reference to the following cases:
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i. During the speed-control, whenever a larger positive disturbance

torque is applied to the system, it is required to increase the control

voltage in order to keep the vehicle speed constant. Since the control

voltage is larger than the back emf voltage, the energy transfer takes place

from the battery into the motor circuit.

2. During the speed-setting, if the disturbance torque is positive and

it is required to increase the speed, the control voltage must be increased

in order to obtain the desired speed. Thus, once more the energy transfer

is from the battery into the motor circuit.

3. During the speed-control of the vehicle if a large negative distur-

bance torque is applied to the system, the control voltage must be reduced in

magnitude in order to maintain the speed constant. Over the interval of time

in which back emf voltage is greater than the control voltage the energy trans-

fer takes place from the motor circuit into the battery. The motor current

reverses its polarity in the armature circuit and its magnitude is controlled

in such a way that the speed of the vehicle is brought back to its desired

value at t = T. In some cases of speed-control at low speeds with large

negative disturbance torques applied to the system, mechanical brakes may be

used to supplement the controller effort.

4. During the speed setting of the vehicle under positive disturbance

torques, if it is desired to reduce the speed of the vehicle by reducing the

control voltage; the back emf voltage becomes greater than the control voltage.

Therefore the energy transfer is from the motor circuit into the battery. This

condition exists until the control voltage exceeds the back emf voltage in

order to supply the necessary motor drive torque corresponding to new desired

speed. The energy transfer is now from the battery into the motor circuit.

The above conditions indicate that in general, E(u), is a measure of net
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flow of energy from the battery into the motor circuit during the transient

phase of the control.

The set of boundary conditions to be satisfied by the state variable

x(t) for three cases of the control action are given below:

Case i. The speed-control.

x(o): x(T): (3.3)

v(o-)_ v(_) : v(T):

Case 2. The speed-setting.

x(o)--xo (3.4)

x(T):

v(O-): v(_) : v(T)=

Case 3. The combination of Case i. and Case 2.

x(o)--xo (3.5)

x(T):_

v(o-)_ v(O+): v(T):
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3.2. The Statement of the Control Problem.

Given the linear time-invariant system (3.1), the performance index

(3.2), a terminal time T, and no constraints on the control u(t)

determine the control u(t) which satisfies the set of boundary conditions:

Eq. (3.3) for speed-control

Eq. (3.4) for speed-setting

Eq.(3.5) for speed-control and speed-setting

and minimizes the performance index given by Eq.(3.2). It is important to

note that for t m T, it is required to maintain the vehicle speed constant

at its terminal value until a disturbance such as a new speed-setting or a

new disturbance torque comes into the system. It is assumed that the state

variable x(t) and the disturbance torque v(t) can be measured exactly by

suitable instrumentation.

3.3. The Optimal Solution of the Control Problem.

The Hamiltonian function H for this problem is given by the equation

H =--u2(t) -- u(t) x(t) + k(t) . e + x(t) -.---v(t) + .------u(t) (3.6)
r Jera] Jera a Jera

where k(t) = Lagrange multiplier.

Pontriagin's minimum principle is used to determine the canonic equations

as follows:

The optimal control is found by satisfying the necessary conditions

8H
_--_, = 0 (3.7)
ouk_)

82H
> O (3.8)

8u2(t)
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Hence using (3.7) and (3.8) in (3.6) give

_H 2 _ kt
: -- u(t) - -- x(t) + k(t) .---- : 0

ra ra aer a
(3.9)

since

$2H 2
=-- > 0 for r

_u2(t) ra a
>0 (3.lO)

From (3.9)

u*(t) = h x(t) - kt k(t)

ra 2J e
O<t_T (3._)

minimizes (3.6).

It is seen from (3.11) u*(t)

and is unique. Therefore u*(t)

the system is linear and the performance index is quadratic.

is a linear function of

is the optimal solution.

x(t) and k(t)

This is because

Substituting

(3.11) into (3.6) gives

H : - -- x2(t) - + (t)k(t) k2(t) - -- v(t)k(t)

4r /_e "_" 2a 2Jer 4 4Je ra Je

Using (3.12) in

(3.12)

*

_(t) = _-Y_V (3.13)

_(t) = _H-_----_

gives the canonic equations
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x(t) = - ax(t) - bk(t) -i.__ v(t)
Je

(3._4)

_(t) : cx(t) + ak(t)

where

e )a = + • a >0

2Jer a

2
kt

b- 2 b>O

2Je ra

_2
C = m

2r
a

c>O

For convenience substitute

x (t)= x(t)- (3._)

= v(t)

in (3.14) to obtain

1

x*(t) = - ax*(t) - bk(t) -Te e _ -

_(t) : cx*(t)+ ak(t)+ ca

(3._6)
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A. Open-Loop Solution.

Write (3.16) in matrix form

x*(t) I - -b

x*(ti

_(t)
i j.--r--_,- aO_
Je

cO_

(3.17)

The general solution of (3.17) is given by

k(t)

QZl(t)

Q21 (t) Q?2(t)

b

+

m

Pl (t)

P2(t)
m

(3.18)

Let

z(t) =

A=

r =

Eq. (3.17) becomes

Ix*(t
LK <t) )I

-a -bc

i

L _

al

z(t) = Az(t) + r (3.19)
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Let

_(t):

Qll(t)

Q22(t)

k[kll2
1Pl t

p(t) = i

Lp2(t)J

Eq. (3.18) becomes

z(t) : _(t) k + p(t) (3.20)

In Eq.(3.20) _(t) is the fundamental matrix solution of (3.19) which

satisfies

$(t) = A_(t) with boundary condition _(0) = I (3.2i)

where I = Identity matrix t and p(t) is the particular vector solution of

(3.19) which satisfies

p(t) = Ap(t) + r with boundary condition p(O) = 0 (3.22)

The fundamental matrix is determined from Eq.(3.21) as follows: since A

is time-invariant applying Laplace transform to both sides of Eq.(3.21) yields
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s_(s) - _(o) = A_(_)

since @(0) = I

_(s): (sT-A)-1 (3.23)

Here (sI-A) -I =

C s+a)

(3.24)

2
where d = a - bc

Inverting (3.24) gives

_(t) =

a

cos t_zsi t

c Si_ t

Note in Eq. (3.25)

_(o) : [ o1, 1o]
= Identity matrix

a Si_ t
Cosh_ t +_

(3.25)

The particular vector solution p(t) of (3.19) is computed as follows:

Taking the Laplace transform of both sides of Eq.(3.22)

sp(s) - p(0) = Ap(s) + r(s)
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since p(O) = 0

p(s) = (sI-A) -1 r(s) (3.26)

Inverting (3.26) by using convolution integral gives

t

p(t) :I _(t-T) r(T) dT

Hence substituting (3.25) and r(T) = _e _ -

carrying out the integration gives cG

p(t) =

( a 1

(-_ _-a_)<d (C°sh_t'l)l+ (c_) I

into (3.27) and

+

!

1 Sinh_ t + a (Cosh_ t-l)I

(3.27)

(3.28)

Note in Eq. (3.28)

Substituting _(t) and

z(t). The constant vector k

boundary conditions on z(t)

For speed-control,

[°Ip(o)=

0

Null ve ct or.

p(t) into (3.20) gives the general solution

is determined in such a way that the two

are satisfied for a particular control action.

(o) = 0

.-x-

x (T)= 0
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Hence

kI = 0

+

Substituting (3.29) into (3.20)determines x*(t) and k(t).

from (3.15) x(t) = x*(t) + 5, the optimal trajectory is given by

ll-Cosh__Tl Sinh_t)_ _j (l_Cos_ t) __ ax(t) = (_ os_ t + I Sink T I e

The Lagrance multiplier k(t) is given by

Since

(3.29)

(3.30)

r
k(t ) = O_l-

k.

--_---] -_ o
bdJe _ bJe

a Cos_ t _ll-C°sh_ T1Cosh_ _Sinh_t

--_/_- _ / _--_ --_

a

bJe_

t)bJe# bJed

Cos_t +

Il-Cosh_ T

Sinh_ T

(3.31)

Using (3.30) and (3.31) in (3.11) gives the expression for the optimal

control function u*(t)
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I gOe

+ kt _ Sinh_t +

2Je b 2Ue 7 I Sinb_T C°sh_ -

Sinh_ t

kta

2Je2b_

a2kt

2--_e2bd)(l-Cosh_ t)-(2_ead + 2_d)
---__...Isi_

S inh_ t
kt a

t

2Je 2

t _

(3.32)

For speed-setting,

x*(O) % O = _ or x(O) _ (Z = x(T)

D x*(T): o

Hence

Substituting (3.33) into (3.20) and using x(t) : x*(t) + _,

kI = 7

4(:Cosh_ T 1 _ + +

k2 = 7 Sinh_ T _ Sinh_ T lJ

/
the following

results are obtained:

(3.33)

osh_t _) t_ _ "I_/cos__in_,F+_ o_m_+1_TJ-/__/.,x(t) = y _Sinh_ {l-C°sh_ TISinh_ t

_ _ a (l-Cosh_t) --- , (3.34)

3ed
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k(t) = y_

+ (_

acoh t( t)._ co_{ co_t-- co_ si_
b Sinh_ b Sinh_

,_s_n_t--_co_t'_[_-co__Icos_t-4_-cos_,__I

SinhI __ a (1-Cos_Et)+ 1 a
Jebd bJ e bJe_ k Sinh_T J

+ --a Si_ t + a-___

bJe_ Jebd i Si--_d T'J

(3.35)

Using (3.34) and (3.35) in (3.11) gives

2j e b 2 2Je

Il-Cos_ T

S inh_ T
Si_ t

kt_ Sinh_ t+ --

2Jeb

kt _ Cosh_ T

2Je b Sinh_ T

kt a I CoshZ t

2J e b/

_ _ I_--cos_'__I
t + -- Sinh_ t + --

2Jeb 2Jeb I'_ T /

ta2)(l-Cos_ t) - ----

2Je2bA 8e A

+

kta
Sinh_ t Sinh_ t

2Je2b_

kta [l-Cosh_ T
Cosh_ t

Note that if y = O in (3.36) Eqs.(3.30), (3.31) and (3.32) agree with (3.34),

(3.35) and (3.36) respectively.

For speed-control and speed-setting the results are the same as given by

(3.34), (3.35), (3.36)except that

v(O-) _ v(O+) = v(T) = _ i.e. 8's are different.
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B. Closed-Loop Solution.

Recall

1

x(t) = - ax*(t) - bk(t) -_e 6 - aG

_(t) : cx*(t) + ak(t) + c_

(3.17)

Equation (3.17) is a two-point boundary value problem. It can be

converted to an initial value problem by making a linear transformation of

the type

x (t) = m(t)k + n(t) (3.37)

Substitute (3.37) into (3.17) and collecting equal powers of k gives

k(1)(t)[m(t) + cm2(t) + 2am(t) + b] + k(O)(t)[n(t) + (cm(t)+a) n(t) + o_c m(t)

1.'T---
+ a_ + Je (3.38)

where k(1)(t) : k(t) : First power of k(t)

: 1 = Zeroth power of k(t)

Since Eq.(3.38) is valid for all values of k(t), the conditions are:

i(t) + cm2(t) + 2am(t) + b : 0

n(t) + (cm(t)+a) n(t) + (_c m(t) + a_ + .---18 : 0

Je

(3.39)

(3.4o)
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Using x*(T) = m(T) k + n(T) = 0 (3.41)

gives the two initial conditions

m(T) = 0 , n(T) = 0

which are required to solve (3.39) and (3.40).

Consider first Eq.(3.39) which represents a first order nonlinear

differential equation of the Riccati type. Substitute T = T - t in (3.39)

to obtain

m(T) - cm2(T) - 2am(T) - b = 0 (3.42)

The boundary condition for (3.42) is m(O) = O.

Let m(T) = ci w_ (3.43)

Substitute (3.43) to (3.42) gives the second-order linear differential

equation with constant coefficients as shown below:

[(_)- 2a_(_)+ bcw(_): o (3.44)

The general solution of (3.44) is given by

_iT _2 T
w(_) = cle + c2e (3.45)

where
Cl, c2 = Two arbitrary constants to be determined

_i = a + _2-bc = a+
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Substituting (3.45) into (3.43) gives

W1_ W2T)
1 Cl_le + c2_2e

m(_) = --
_l _ _2 •

c cle + c2e

since m(O) = O.

From (3.46) Cl_1 + c_ = 0

Hence

(3.46)

_l (3.47)
c2 = - Cl _2

Substituting (3.47) into (3.46) yields

_ •
(3.48)

Consider now Eq.(3.40) which represents a first order time-varying linear

differential equation with a constant forcing function. Substitute T = T - t

in (3.40) to obtain

1
n(_) - (cm(_)+a) n(T) - (_cm(T) - a_ - .---_ = 0

Je
(3.49)

The boundary condition for (3.49) is n(O) = O. The general solution of (3.49)

is given by

Y(cm(6)+a)dg (cm(6)+a)dg

n(O)e 0 0 fn(T) = + e

0

J (cm(g)+a)dg
e dS

(3.5o)
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Since n(O) = 0 Eq.(3.50) becomes

T

f(cm(&)+a)d& T -f (cm(g) + a)dg

n(T) = e0 f(c°_n(_) + a_+ _-leO0
d_ (3.51)

Substituting for m(T) from Eq.(3.48) into (3.51) and using a change

of variable of the form

Cosh_ & - a Sinh_g = y

in the transformed equation and integrating, the following equation is

obtained :

n(_) =

(_ Cosh_ a Sink T 1

je(_Cosh_T-aSinh_T) _

Noting from (3.37)

(3.52)

x*(T) = x(T) - (_ : m(T)k + n(T)

k(T) x(T) - a - n(_)
= m(_)

(3.53)

Substituting (3.53) into (3.]-I)

u (T): x(_) (3.54)
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Now using (3.48) and (3.52) in (3.54) and noting that T = T - t the closed-

loop solution or feedback control law for this optimization problem is

determined to be

_(t) : x(t) + -- +
2Jeb.J Si_/_ (T-t) /k2Jeb J

i - Cosh/J (T-t)l[kt a ]

Note that in (3.55) the expression

written as

/

:(_- x(t) Cosh_d (T-t);

i Sinh_ (T-t) /

can be

(3.55)

(_- x(t) + x(t)(1- Cosh_ (T-t))Sinh_ (T-t) Sinh_ (T-t)
(3.56)

Therefore (3.55) takes the following form

U_(t) = x(t)(2_----+ --kta,_ + x(t)

2JebJ
Cosh, ]Sinh_ (T-t) /_,2_eb )

+

(1- Cosh_ (T-t))# kta _ (O_- x(t)l_kt_}
;inh_d (-_-t; h2Je2b#d + Sinh--_d (T-t)_k2--_eb

(3.57)

Figure 3-1 shows the structure of the optimal feedback system given by

(3.57). From Eq.(3.57) note at t = T

2 2Jeb _

+

[2Jebl

(3.58)

Since using L'hospital's rule



203

kta

2Je 2 b_/'d

Disturbance Torque

i _ Cos h,v/_(T_t)_l_ ,B

v

v

v

i,.=.=

v

kt2Je2b

_ Plant

Summer

x(t)

k,J_ ,:cos,____cT-tl___L2d;b / Sinh_/d(T-t)/

kt_/d • I

2J--_ /Sin h,_(T-t) _

'ror =a-x(t )
_-_(t) Actual Speed

Error Detector

Fig. _-i. The simulation of the optimal control system

given by Eq. (3.57).
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r

limit =

t _ T Sinh_ (T-t)' I -_ Cosh_ (T-t)
t=T

=0

limit

t_T Sin_ (T-t)/ -_ Cosh_ (T-t) =
t=T

If, however, x(T) = 0 in Eq.(3.58) for t z T then

u*(t) = x(T)q h2
t z T (3.59)

Substituting (3.59) into (3.1) where v(t) = 6 gives

x(t) = O for t >-T (3.60)

If this requirement is met, the controller enters the steady-state phase

of its operation. Therefore it is clear that some means must be incorporated

into the structure of the optimal feedback controller shown in Figure 3-]-, to

turn the time varying feedback gains on at t = O and to turn them off at

t=T.

In this analysis, it has been assumed that the value of T is known a

priori. As shown in Fig. 3-2 the optimal control function u*(t) and hence

the optimal trajectory x(t) vary greatly with the particular choice of T.

Figure 3-2 describes this dependence for the case of speed-control. Note that

in the plot x(t) vs T, x(t) = 0 at t =T
2"

This salient feature holds for all G's and all

from the use of Rolle's theorem which guarantees that

t which satisfies the inequality

_+_ a

_(t) - J--_

Sinhq_ T

O<t <T.

's. The proof follows

x(t) = 0 at some point

Using Eq.(3.30) to obtain

_osh_ t - Cosh_ (T-t))
(3.61)
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The Optimal
Control
Voltage

t

u*(t); O_t__T=T _

u_(t); O<t<T=2T*

I I

u*(t);O<t <T=ST *

T* 2T* 31T*_t

The Optimal l
Trajectory x(t); O<t<T=T* x(t); O<t<T=2T* x(t); O<t<T=ST*

(2

I I
2T _

Fig. 3-2. The behaviour of the optimal control

u*(t) and the optimal trajectory x(t) for a

particular set of G and B as terminal time T

varies for the case of speed-control.



206

x(t) = 0 in 0 < t < T if and only if

cos vqt :cos / (3.62)

The solution of Eq.(3.62) is t = T Since there is a time-delay
2 "

between u*(t) and x(t), u*(t) = 0 at a time t such that 0 < t <T
2

96

Fig. 3-3 shows the relationships between u (t), x(t) and T for the

case of speed-setting. Note that u*(t) = 0 at a time t which is less

than the time t for which x(t) = 0 in the interval 0 m t _ T.

Fr_n the observation of the above figures it is clear than the terminal

time T must be selected to satisfy the following requirements:

1. The optimal control u*(t) and the optimal trajectory x(t) remain

within acceptable limits under all practical working conditions.

2. The desired value of x(t) at t = T is obtained as soon as

possible in a given control action. This is in complete agreement with the

assumption 2 in section 3.1

C. Practical Considerations.

As shown in Eq.(3.57) the feedback control law u*(t) requires the

measurements of the speed x(t), the disturbance torque G and the desired

speed 5. The speed x(t) may be measured by a tachogenerator or a suitable

electronic pulse counter which gives a voltage proportional to speed. The

disturbance torque G is a function of sine of the slope angle of the terrain.

Therefore, it is required to have a device which produces a voltage proportional

to slope angle of the terrain. The desired speed setting _ is obtained by

means of a potentiometer connected to a voltage source. These analogous

measurements are multiplied by time varying gains and added linearly to produce

the optimal control u*(t).
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The Optimal
Control

Voltage

u_(t); O_<t<T=T _

u_(t); O_<.t_<T=2T * u*(t); O_<t<T=3T _

I I I
T _ 2T _ 3T _ t

The Optimal
Trajectory x(t); O__.t_<T=T_

(2

x(t);O<t_<T=2T _ x(t); O<t<T=3T _

T _ 2T _ 3T _ t

Fig. 3-3. The behaviour of the optimal control

u*(t) and the optimal trajectory x(t) for a
particular set of _ and _ as terminal time T

varies in the case of speed-setting.
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When a disturbance comes into the system any error ((_- _(t)) may be

used to activate an auxiliary electronic logic circuit (not shown in Fig.

3-1) which produces the time varying gains shown in Fig. 3-i.

For t 2 T the logic circuit interrupts all output signals of time

varying gains and hence x(t) = _ for t _ T. The optimum controller which

is determined has the following characteristics:

1. In any control action, it brings the speed to its desired value

at t = T. i.e. x(T) = (_

2. It minimizes the net flow of energy from the battery during the

transient phase of the control.

3. With the help of an auxiliary electronic logic circuit it keeps the

speed constant at its desired value for t _ T until a new disturbance comes

into the system i.e. x(t) = 0 for t >-T.

The operation of the optimal controller is illustrated in Fig. 3-4 for

three different control actions. The reason for jumps on the value of u*(t)

at t = T can be seen most easily in referring to Eq.(3.58). Here u*(T)

contains a derivative term x(T) which is made zero for t >_T by the action

of auxiliary electronic logic device. Thus if x(t) is negative as t _ T

then there is an upward jump in the value of u*(t) at t = T and if x(t)

is positive as t _ T then there is a downward jump in the value of u*(t) at

t=T.

D. Discussion of the Results.

The minimum-energy controller is determined to be a linear time-varying

system. The engineering construction is costly but can be done with the help

of present technology. Since the controller is required to perform as many

times as the need arises during its lifetime, the initial and maintenance costs

may be negligible in comparison with the economical savings which will be gained

with the best possible use of the energy source. The asymptotic optimal solution
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Case (I)

v(t)

v(O-)

Speed-Control

v(o+):/3

T t

T t

Case (2)
v(t),

v(O-)=/_

Speed-Setting

v(O+)=p

I
I

Case (:5)
v(t) v(O+)=/3

v(O-)

T t

Speed-Control and Speed-Setting

T t

u*(t)_._

x(t)_ IT t

T t

v

T t

T t

Fig. 3-4. The operation of the optimum feedback controller.
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for this control problem does not exist as shown below:

Assume T - _. From Eq. (3.48) and Eq.(3.52)

lira m(t) : -b

T-_° a-_
(3.63)

lira n(t) = - O_ +

T-_ je_
(3.64)

Substituting (3.63) and (3.64) into (3.54) gives

u (t): x(t) kt !_]+ _

+ 2Je b 2Jeb J 2_e2b 2j_]
(3.65)

Using (3.65) in (3.1) gives the following first order linear differential

equation with constant coefficients:

_(t)+ _ x(t): a
_Je

(3.66)

The solution of (3.66) is given by

x(t) = x(O)e-_ t- 8 dj_-_,ea (I - e-_ t) (3.67)

From (3.67) it is clear that at steady state

x(t) : - 6 a
dj_-7 (3.68)

clearly, the terminal condition on x(t) is not satisfied.

The reason for this can be seen from Fig. 3-2. Namely as T _ _ the

control voltage remains very small until the terminal point is reached and

becomes infinite as the terminal point is reached. Therefore if _ is
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positive the steady state speed is negative and if 6 is negative the

steady state speed is positive.

The performance of such a controller is not satisfactory from an

engineering point of view.

Note in the above analysis no constraints are put on the control variable

u (t) and the state variable x(t). This of course is not the case in practice.

However, if these constraints are included in the formulation of the optimal

control problem, mathematical complications arise and the solutions are no

longer linear.

E. Future Work.

Future work involves the accomplishment of the following:

1. The determination of the optimal solutions for all cases considered

above by taking motor inductance into account.

2. The formulation of the optimization problem for a traction motor whose

dynamical behaviour is described by a first order nonlinear differential

equation.

3. The formulation of the optimization problem for a dc motor with

armature and field controls.

F. Appendix.

The electrical energy input into the plant described by

Je x(t) + fe x(t) = kt ia - v(t)

&a ia(t) + ra ia(t) = u(t) - _ x(t)

(3.69)

(3.7o)

is given by

T

E(u) : /u(t) ia(t) dt

O

(3.71)
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where i = Armature current.
a a

If ga = O. From (3.70)

= Armature inductance.

a

u(t)- x(t)
r
a

(3.72)

Substituting (3.72) into (3.69) and (3.71) give the following set of

equations:

fe kt_ ) 1 kt u(t)x(t) :- _e + .-----Jerax(t)- _e v(t) + .----Jera
(3.1)

and

( i u2
E(u) = _-- (t)

0 a
u(t) x(t))r

a

dt

l.

e

So

4.

.

G. References.

Sridhar, R., Unpublished Class Notes, California Institute of Technology,
1965-66.

Sridhar, R., Bellman, R., and Kalaba, R. E., Sensitivity Analysis and

Invariant Imbedding_ Rand Corporation, March 1964.

Athans, M., Falb, P. L., Optimal Control_ McGraw-Hill, 1966.

Merriam, C. W., Optimization Theory and the Design of Feedback Control

Systems, McGraw-Hill, 1964.

Thaler, G., Wilcox, M., Electric Machines_ Dynamics and Steady-Stat%

John Wiley and Sons, Inc., 1966.



213

CHAPTER 4

SENSITIVITY CONSIDERATIONS IN THE DESIGN OF _DBACK CONTROIB

4.1. Introduction.

In optimum control theory, one assumes a mathematical model for the

physical process and then determines either a control function or a control

law that minimizes a well defined performance index, subject to various types

of constraints. The implementation of the above control on the actual

physical process may or may not produce the calculated optimum results.

One of the reasons for this is usually the parameter variations in both the

process and the controller. When design is carried out on the basis of an

assumed mathematical model, it is important to know how the actual performance

deviates from the theoretical results. How does the value of the performance

index change for changes in process parameters, how do the trajectories

change for changes in process parameters are some of the important questions

that are assumed under the title of Sensitivity Analysis.

When a meaningful definition of sensitivity is made in relation to a

given problem, methods of reducing sensitivity are known as minimum sensitivity

des ign methods.

In the subsequent sections, these problems will be examined.

4.2. Review of Literature.

Let the dynamic process be described by the ordinary differential equation

£(t0) = _ (4.2)
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where _: n x i state vector, _: m x i control vector, _: p x I

parameter vector and c: n x 1 initial state vector.

Suppose it is desired to determine a control u (t,x), to < t < T ,

such that the following performance index is minimized

<

i(_u):J
to

g(t,__u) dt

where g(.) is a scalar valued, non-negative function of its arguments.

By the well known procedures of optimum control theory, one can obtain

the optimum feedback control and let it be denoted by

(4.3)

} : _(t,m%) ,4.4)

where _O is the nominal value of the parameter vector.

(4.4) in the actual system with the parameter vector ___

the value of the performance are denoted by

Using the control

the trajectory and

_x(t,to, _0, 00 and I (_ ____0 ) (4.5)

respectively.

In actual practice, if _ = _O' then I(c_;_O,_O) will coincide with

the theoretically computed minimum value and x(t, to,_o,_o) will coincide with

the theoretically computed trajectory.

The literature consists mainly of examining (4.5) or variations of it.

Dorato [1] considers the expression for _ which can be written as
m

8I Tr _g 8x

-_ = i _ • -_ dt

- to - -

(4.6)
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_x
where _g is a row vector with components _g and -_-- is a n x p

- _xi i -

matrix with elements 8p-_.. The latter is evaluated by the usual varia-

tional formula

/

id __

3f
n

where -- is a
_x

r- --

8f _x i_flm m _b

= L

BE

; _---t=tO
= o (4.7)

_f. 8f
1

n x n matrix with elements _x-- and _ is a n x P
m-- Bf. j

l
matrix with elements

_. "

J

For small variations of parameters from the nominal _0 _

in the performance index is given by

the change

_i :_ • d_ (4.8)

where d__ is a p x i column vector with elements Gi - s0.. This allows the
i

designer to determine the performance index sensitivity to small changes in the

parameters from their nominal values. In any given situation, one should be

careful in assigning meaning to either the performance sensitivity vector $I

II IIor its norm

Turning now to the so called trajectory sensitivity, the situation is as

follows. Consider the system (4.1)-(4.4) and let it be desired to examine the

variations of the trajectory x(t, to,_o,_G) due to small changes in the

parameter values. It is easy to see that the variation of x with respect

to a parameter Gi obeys the linear differential equation

d 5x

dt _i j.l-,+ - (4.9)

with --
_o_.

I

at t = tO and _i = _Oi is O. (4.1o)
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For the nominal _0' the various Jacobians in (4.9) can be evaluated along

the trajectory corresponding to _0 and thus (4.9) is a linear_ time-varying

differential equation.

_x

-_- are called the trajectory sensitivity functions by Tomovic [2]. Thus,

changes in the trajectory to small changes in the parameter can be easily

computed.

In order to use this approach to design less sensitive systems,

Dougherty, et.al. [3] propose the following. Letting S A 8_
--= _C_. ' (4.9) and

1

(4.10) can be written

= A(t) S + b(t) (4.11)

[(t0) : (4.12)

This is adjoined to the plant equations (4.1) and (4.2) and a new performance

index is defined as

W_

I = [g(t,_u) + h(t,S)] dt

to

where h(.) penalizes the sensitivity terms. It is not possible to solve the

above optimization problem directly and one must assume some form for the

control law. For example, one may assume

(4.13)

_u: [E1] __+ [i2] _S (4.14)

and then determine the elements of the matrices _ and K2 to minimize (4.13).

Even if this can be done, to implement the control, one must generate

corresponding to the actual parameter value _ which is assumed unknown. The
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above authors get around this difficulty by computing S always for
m

= _0 (known). In the examples they have presented 3 they have chosen to

ignore the feedback from _ completely. The results are not conclusive at

the moment.

It seems that this approach will not be satisfactory in general because

it depends so much on the calculations done on the basis of the nominal value,

_0' of the parameter and at best_ it is a local theory. If one assumes that

the actual parameters are in a region around _0 _ the method may yield

satisfactory results when this region is very small. Actual experiments have

to be carried out for a given situation to assess the merits of this approach.

The main motivation for this approach seems to be that it can be forced into

the framework of the standard optimum control problem.

4.3. Discussion.

From what has been said3 it is clear that one can compute the changes in

the performance index and (or) changes in the trajectory (using a suitable norm)

for small changes in the parameter values from their nominal ones [5]. Unfor-

tunately 3 it is not easy to establish the "smallness" quantitatively except

through experimentation on a given problem.

One could augment either some measure of the performance sensitivity vector

or the trajectory sensitivity function to the primary performance index (4.3)

and compute an approximate control law. As has been observed in the literature 3

this approach need not always result in an insensitive system. The extent to

which parameter variations are tolerated must be determined by simulation. The

biggest drawback of these methods seem to be that they are forced into the

optimal control theory formulation in an artificial way and the merits of this

must be determined by simulation experiments.
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D
4.4. Min-Max Formulation.

In the approach of Dougherty, et.al, referred to earlier, it was seen

that they assumed a feedback structure and then computed the free parameters

in this structure to minimize an augmented performance index. Let us

examine this problem in a different way.

Suppose we know that the parameter vector (_ belongs to some set M.
m

For example, we may have reason to believe that ml _ (_i _ M.l. Similar bounds

on the other parameters may be specified. Let us also suppose that a fixed

feedback structure is chosen given by

where [ is the output vector (measured) related to the state _ via a

known transformation (sensor dynamics for example) and b is a r x 1 vector

of adjustable controller parameters to be chosen optimally. The reasons for

assuming the structure of feedback is fully discussed in Ref. 4.

Let us denote the minimum value of (4.3) when optimized subject to (4.1)

(via the methods of optimum control) by

I(.9_) (4.16)

Let us denote the minimum value of the performance index

T

[
j g(t,_ (y__b)) dt

t o

optimized subject to

(4.17)

x = f(t,x_j[(y__b),C_) (4.18)

X(to) = c
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by

(4.19)

In general, the minimizing value of b depends upon the initial

condition c. What is reasonable therefore is to match the performance index

surface (4.19) with _ .16) in some suitable sense.

Since the performance index plays a crucial role in optimization and

one is trying to find a control which minimizes the performance index, it is

reasonable to ask if the performance index surface with a fixed controller

configuration can be matched (in some suitably defined sense) to the performance

index surface of the optimum system. With this motivation, one is naturally

lead to find b according to the criterion

V(b b_) -I(b _)
Min Max Max I(c_)_) (4.20)
beB ceC _eM

where B is the set of controller parameters and C is the set of allowable

initial conditions.

In essence what this min-max operation does is to synthesize a controller

that guards against the worst initial condition and the worst parameter vector.

In actual practice these worst cases may not arise which merely means that the

controller is designed in a very conservative way.

It must be mentioned that the operations involved in (4.20) are not easy

from a computational point of view but this is the price one has to pay for a

realistic approach to the problem. We shall illustrate below the details for a

linear problem and give computational results.
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Example.

Consider the second order linear system described by

_i = xz Xl(°)= i

X 2 = - (XX2 + U x2(o) = o

where 0.2 _ _ _ 2. The set M is the segment [0.2, 2] on the real line.

In this problem, we shall assume that the initial conditions are precisely

known.

Let the primary performance index be

)

CO

I =/(x12 + x22 + u2) dt

0

The optimum feedback control and the optimum performance index are found

to be

and

respectively.

Suppose we fix the controller configuration (variations on this are

possible) to be

u = - KlX I - K2x 2

D and want to choose _ and K2 in the Min Max sense. With this fixed

controller configuration, the value of the performance index is given by
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i + _12+ _I(i+ _22) (_2+ _)(1+ _i_)
v(_,_i,_2) = + - _i_2

2(_2+ _) 2_i

To illustrate the approach, let us set _ = i and merely find the

optimum K2 in the rain max sense. The results are given below. K2 was

restricted to the range [0.2,2.0]

K2 opt = 1.4

opt = 2.0

The value of the performance index is 0.0316. To get an idea of how the

trajectories behave, we can compute the closed loop poles of the system when

the feedback is - xI - 1.4 x 2 and _ assumes the values 0.2, 1 and 2.

Closed Loop Poles

0.2 I - 0.8 4- j 0.6
}

i _ - 1.875 , - 0.525

2 i - 3.05 , - o.35
i

I

1.676

2. 000

2. 645

V

1.743

2.000

2.713

If the interest was more on the trajectories than the performance index,

one could have determined a feedback gain that would minimize the maximum

deviation of the controlled trajectory from the optimal one. Here, we choose

to concentrate on the deviation of the performance index instead.

minmax design when u = - Kx 1

If we fix the controller configuration as above and seek for a value of

K (K in the range [0.2, 2.0]) in the min-max sense, computational results

show that K = 0.2. One could compute the value of K such that the
opt

trajectories of the controlled system deviate from those of the optimum in a

min max sense. Experiments were conducted for Xl(O ) = 1 and x2(O ) = 1.
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For u = - xI - Kx2, K in [0.23 2.0], the results were

K=0.6

The location of closed loop poles and the values of I and V are

summarized below.

0.2

i.O

2.0

Closed Loop Poles

j -0.4 ±jO.9

- 0.8 ± j 0.6

- 0.47 , - 2.13

5.o _ 5.1

5.29 I 5.3

For the control configuration u = - KXl, the optimum value of the

feedback coefficient was 0.8. The closed loop poles, values of I and

for different values of G are summarized below.

V

0.2

1.0

2.0

Closed Loop Poles

- O.1 ± j 0.88

- 0.5 • j 0.74

5.2 _ 15.95

5.0 ! 5.79

- 0.55 , - 1.45 5.29 i 5.47
4 i

4.5. Discussion.

In the above example# we assumed fixed initial conditions and thus

eliminated the maximization over the initial condition set. It is not too

difficult to include this maximization but the computational effort increases.

To avoid multiple minimization and maximization operations, we may proceed as

follows. Considering the above numerical example, we found that Kop t = 1.4

and Gopt = 2.0. Now, we may use G = 2.0 in the plant equations and find

a new value of K which minimizes the maximum deviation of the performance
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index with respect to a given initial condition set. This may or may not

yield a satisfactory solution because the min and max operations cannot be

interchanged in general.

On the basis of the limited amount of digital experimentation, it is felt

that a min-max design is feasible whether one chooses to design feedback con-

trollers on the basis of performance index deviations or trajectory deviations.

The computational time increases as the numberof variables over which min-max

is done increases but it is felt that this should not be a great disadvantage

because the design is carried out off line.

A simulation experiment based on this design procedure should be conducted

to assess the merits of this approach.

4.6. Min max Design Based on Performance Index and Trajectory Deviations.

In the earlier sections, we have seen an approach to the design of feedback

controllers based on minimizing the maximum deviation of the performance index.

While this design accomplishes what it is intended to accomplish, the resulting

trajectories may vary quite a lot depending on the value of the unknown plant

parameter. If one is interested in deviations on the trajectories, it is

appropriate to consider a design based on the performance index

p .u-- 'Xs* x*llMin MaxiV - I 2+ w • ,, - ,
K (_ L

where K refers to the fixed configuration feedback controller parameter, (x

refers to the plant parameter, Xs*(t ) refers to the trajectory of the system

with the fixed configuration controller (also called the specific optimum

trajectory) and x*(t) refers to the system trajectory in the optimum controller.

11.112 is an appropriate norm and W is a relative non-negative weighting factor.
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t
The first term in (4.21) corresponds to the deviation in the performance

index and the second term corresponds to the deviation in the trajectories.

To illustrate this line of design approach, the following illustrative

example is considered. The plant is governed by

_i : x2 _l(O): i

x2 = - _x 2 + u _?(o) --o

and the performance index is

GO

J (x12 + x22 + u2) dt

0

Let _ be in the range [2,4].

The optimum control is

U

!

:- xI + o_- \/2+ 3 x 2

and the optimum closed loop system is

xI + 3 + (X2 xI + xI = 0

which results in

, klt k2t

xI (t) = cI e + c2 e

where
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1 \/ 0_2
_=[i" 3+ -

L_

cI --×J(x2-xI)

and c2= kl/(_-_2)

Let the specific optimum controller be fixed as

u = - KxI

where K is to be chosen in the range [O.1, 0.9].

With this controller, the specific optimum trajectory is given by

Plt _2t

Xs(t ) = AI e + A 2 e

where

_i = [ [- o_+ - 4K

1 G. 2.4 K
P'2 =_ i ._

A1 = P2/(_2-_I)

and
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Now the problem is to choose the feedback parameter K according to

the performance criterion

L f iMin Max V - I
K G --r+ w (Xs(t) - x*(t))2dt

0

where V and I are defined as in Section 4.4.

A numerical experiment results in the values of K = 0.8 for W = 0

and K = 0.9 for W = 2.0. The closed loop poles are shown in the following

table.

W=O

Closed Loop Poles

- o.55 , - z.45

- 0.22 , - 3'78

W=2.0

CX

2.0

4.0

Closed Loop Poles

- 0.685 , - 1.315

- 0.24 , - 3.760

It may be noted that the location of the closed loop poles by themselves
l

may not yield much information. A plot of the trajectory Xs(t ) will have to

be examined to decide if an adequate design has been accomplished. In this

example, if we plot the xs(t ) trajectory for W = 03 _ = 2.0 and 4.0 and

W = 2.0, _ = 2.0 and 4.0, we find the following. The trajectories for

= 2.0 and G = 4.0 are closer together when W = 2.0 than when W = 0.O

which is as it should be. But, the addition of the trajectory deviation term

in the performance index has not produced dramatic results in this example. This
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is partly due to the particular nature of this example where the trajectories

are always well damped exponentials for values of _ between 2.0 and 4.0.

Even though the results are not spectacular in this example, this method

merits consideration in other problems where the minmax design procedure is

used.
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